

			Page
Air/water heat pumps Split version modulating	Hoval Belaria® SRM Hoval Belaria® compact SRM Description Part No. Technical data Performance data Dimensions Space requirement Engineering Examples	4.8 - 11.4 kW 4.8 - 11.4 kW	219 220 229 234 238 238 246 248
Split version modulating high temperature	Hoval Belaria® SHM Description Part No. Technical data Performance data Dimensions Space requirement Engineering Examples	9.5 - 13.2 kW	251 252 258 261 263 263 267 269
Split version, modulating	Space requirement Ultras	2.1 - 17.4 kW 2.1 - 10.2 kW Source B comfort C (8,17) Source B compact C (8/200) ble starting July 2019	271 273 279 284 291 293 296 298
Indoor installation, modulating		ation	301 302 313 318 324 325 327 329 332

Page

Indoor installation two-stage		Hoval Belaria® twin I Hoval Belaria® twin IR Description Part No. Technical data Performance data Dimensions Space requirement "stand Space requirement "flex" Space requirement "vario	installation	335 336 348 354 358 359 362 363
Outdoor installation two-stage		Hoval Belaria® twin A Hoval Belaria® twin AR Description Part No. Technical data Performance data Dimensions Space requirement	17.2 - 31.6 kW 17.2 - 31.6 kW	365 366 373 377 381 381
Outdoor installation two-stage		Hoval Belaria® dual AR Description Part No. Technical data Performance data Dimensions Space requirement	25.1 - 50.3 kW	385 386 393 396 400 401
Brine/water or water/water heat pumps	To Not Not Not Not Not Not Not Not Not No	Hoval UltraSource T comformation - Description - Part No Technical data - Performance data - Dimensions - Space requirement - Engineering - Examples		405 407 415 418 424 425 426 427
		Hoval Thermalia® comfort Description Part No. Technical data Performance data Dimensions Space requirement Examples	5.8 - 22.3 kW	431 432 440 444 448 448 449

		Page
Brine/water or water/water heat pumps	Hoval Thermalia® twin Description Part No. Technical data Performance data Dimensions Space requirement Examples	451 452 460 463 467 467 468
	Hoval Thermalia® dual Description Part No. Technical data Performance data Dimensions Space requirement Example	471 472 478 483 489 491 492
Fan convectors	Fan convectors FWT-CT Description Part No. Technical data Dimensions Engineering Example	493 493 495 496 499 500
Engineering heat pumps	Engineering General Room heating and water heating energy efficiency Calorifier -selection tables Flat collector - dimension tables Depth probe - dimension tables Brine/water - flat collector Brine/water - depth probe Water/water - pumping and injection wells Active/passive cooling Smart Grid	501 501 526 528 531 532 534 535 536 537 539

Description

Hoval Belaria® SRM Hoval Belaria® compact SRM Modulating heat pump system for heating and cooling in the living area

Split system comprising indoor unit and outdoor unit. Modulation range 30 % to 100 %

Indoor unit Belaria® SRM

- · Compact unit for wall installation
- · Casing made from painted, galvanised sheet steel. Colour pure white (RAL 9010).
- Condenser stainless steel/Cu
- Speed-controlled high-efficiency pump
- Pressure expansion tank 10 litres
- Pressure gauge
- Flow sensor
- Cut-off valves for heating flow and return (included separately)
- **Emergency heating** Hoval Belaria® SRM (4) 3 kW Hoval Belaria® SRM (6-16) 3/9 kW (see also technical data) with safety thermostat, safety valve
- Strainer, air-bleeding valve, overpressure valve
- Controller with heating, cooling and calorifier function (operating unit included separately)
- With cooling function through inversion of cycle
- Electrical box
- · Flow and return sensor installed
- · Filling and drain valve

Belaria® compact SRM indoor unit

- · Compact floor-standing unit
- Casing made from painted, galvanised sheet steel. Colour RAL 9010 (pure white).
- Condenser stainless steel/Cu
- · Stainless steel calorifier installed Hoval Belaria® compact SRM (4) 180 litres Hoval Belaria® compact SRM (6-16) 260 litres
- Speed-controlled high-efficiency pump
- Pressure expansion tank 10 litres
- Pressure gauge
- · Flow sensor
- · Cut-off valves for heating flow and return (included separately)
- Emergency heating Hoval Belaria® compact SRM (4) 3 kW Hoval Belaria® compact SRM (6-16) 3/9 kW (see also technical data) with safety thermostat, safety valve
- · Strainer, air-bleeding valve, overpressure valve
- Controller with heating, cooling and calorifier function (included separately)
- With cooling function through inversion of cycle
- Electrical box
- · Flow and return sensor installed
- · Filling and drain valve

Outdoor unit

- Compact unit for outdoor installation
- · Casing made from painted, galvanised sheet steel, colour beige/grey (similar to RAL 7044)
- Speed-controlled compressor
- 1 / 2 speed-controlled fans
- Coated Alu/Cu finned-tube evaporator
- · Electronic expansion valve

Indoor unit Hoval Belaria® SRM

Indoor unit Hoval Belaria® compact SRM

Hoval Belaria® SRM Hoval Belaria® compact SRM		Heat o	Cooling capacity			
			Type	with A-7W35	with A2W35	with A35W18
35 °C	55 °C			kW	kW	kW
	A**	♣ A	(4)	4.6	4.8	5.9
	A**	♣ A	(6)	5.3	6.4	7.3
	A**	A A	(8)	6.4	7.7	8.4
		本 A	(11)	8.8	9.1	15.1
	A**	♣ A	(14)	11.7	10.9	16.1
		♣ A	(16)	12.3	11.4	16.8

Energy efficiency class of the compound system with control Performance data at nominal output

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of ≤ 0.23.

Seal of approval FWS

The Belaria® SRM (4-16) series is certified by the seal of approval of the authorisation commission of Switzerland

- Four-way valve
- Filled with refrigerant R 410 A
- Shut-off valves on the refrigerant side
- Outdoor sensor installed

Connections, heating/cooling

- Heating connections Indoor unit Hoval Belaria® SRM (4-16) bottom, indoor unit Hoval Belaria® compact SRM (4-16) top
- 2 cut-off valves included separately

Connections, refrigerant line

- Indoor unit Belaria® SRM (4-16) bottom, indoor unit Belaria® compact SRM (4-16) top
- Outdoor unit on the right side
- Hot gas line 15.9 mm (%") liquid line: Belaria® SRM, compact SRM (4-8) 6.4 mm (1/4") Hoval Belaria® SRM, compact SRM (11-16) 9.5 mm (3/8")

Condensate drain

- Free run-off of the condensate for draining off
- An optional condensate drip tray for collective discharge of the condensate is available

Electrical connections

- Outdoor unit on the right side connection:
 - Belaria® SRM, compact SRM (4-8) 230 V, Belaria® SRM, compact SRM (11-16) 3 x 400 V
- Indoor unit is fed from the outdoor unit
- Emergency heating is connected to the indoor unit separately
- Electric heating element connection in the external calorifier 1 x 400 V (Belaria® SRM (4-16))

Delivery

- Inside and outdoor unit delivered packaged separately.
- Both cut-off valves are included separately with the indoor unit.
- Sensor for calorifier supplied loose in the indoor unit (Belaria® SRM (4-16))

On site

- · Installation of the insulation set (Hoval Belaria® SRM)
- Installation of the collective alarm board
- Wall openings for refrigerant connecting lines.
- Electr. connecting line outside/indoor unit

Hoval Belaria® SRM Hoval Belaria® compact SRM air/water heat pump system

Part No.

Modulating heat pump system for heating and cooling. Comprising inside and outdoor unit. Belaria® compact SRM with integrated calorifier in the indoor unit.

Hoval Belaria® SRM

Heat pump system

Туре	A-7W35	Heat output kW A2W35	Cooling ca- pacity kW A35W18	
(4)	4.6	4.8	5.9	7013 709
(6)	5.3	6.4	7.3	7013 710
(8)	6.4	7.7	8.4	7013 711
(11)	8.8	9.1	15.1	7013 712
(14)	11.7	10.9	16.1	7013 713
(16)	12.3	11.4	16.8	7013 714

Hoval Belaria® compact SRM

Heat pump system with integrated calorifier

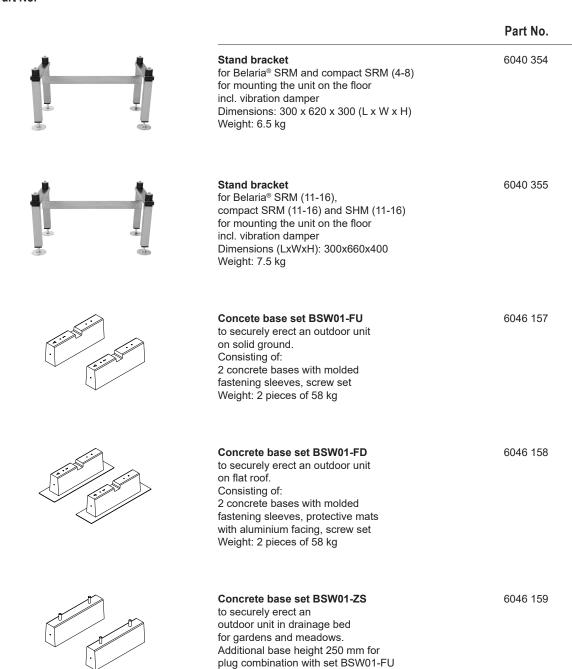
Type	Calorifier litres	Heat output kW A2W35	Cooling ca- pacity kW A35W18	
(4)	180	4.8	5.9	7013 715
(6)	260	6.4	7.3	7013 716
(8)	260	7.7	8.4	7013 717
(11)	260	9.1	15.1	7013 718
(14)	260	10.9	16.1	7013 719
(16)	260	11.4	16.8	7013 720

Energy efficiency class see Description

Connection set

for Belaria® SRM (4-16) Prevents vibrations of the heating pump on the heating network Consisting of:

2 pcs. flexible hoses DN 32, L=1.5 m 2 pcs. reduction nipple R 11/4" x RG 1"


2 pcs. seals

Accessories	Part No.
Protective roof for outdoor unit for Belaria® SRM, compact SRM (4-8) Aluminium powder-coated Colour: silk grey RAL 7044 Can also be combined with wall bracket for outdoor unit.	6040 215
Protective roof for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) Aluminium powder-coated Colour: silk grey RAL 7044 Can also be combined with wall bracket for outside unit.	6040 216
Protective grid for outdoor unit for Belaria® SRM and compact SRM (4-8) sturdy grid for protection of the evaporator Material: coated stainless steel (RAL 7044) Mounting on site	6031 613
Protective grid for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) sturdy grid for protection of the evaporator Material: coated stainless steel (RAL 7044) Mounting on site	6028 144
Protective grid for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) sturdy grid for protection of the evaporator (on the front) Material: coated stainless steel (RAL 7044) Mounting on site	6028 243
Wall console for outdoor unit for Belaria® SRM and compact SRM (4-8) for attachment of the unit to the wall 2 brackets made of steel sheet incl. vibration dampers and fixing material Attention: Cannot be used in this form on insulated walls! Not suitable for lightweight walls!	6031 530
Wall console for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) for fastening the unit onto the wall 2 stainless steel clamps incl. vibration dampers and fastening material Caution: Not to be used in this form on insulated walls! Not suitable for lightweight walls!	6040 353

Vibration damper for Belaria® SRM (4-16), compact SRM (4-16) and SHM (11-16) for installing the unit on a concrete base (on site). 4 pieces incl. dowels HKD-S M8x30, washers and nuts

Consisting of:

screw set

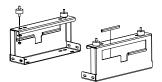
2 additional concrete bases,

Weight: 2 pieces of 58 kg

Accessories

Acoustic insulation housing SDG01

for Belaria® SRM (4-8) and compact SRM (4-8) for reducing the noise level of the unit set up outdoors Protects the unit against any weather influences Steel with aluminium zinc coating Colour: grey (RAL 9006) Dimensions: 1065 x 1200 x 900 (HxWxD)


Sound attenuation depending on installation and ambient conditions

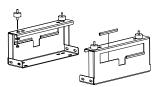
up to -6 dB(A)

Base set SDG01 must be ordered as accessory

Part No.

6040 356

Base set SDG01


for sound attenuation housing SDG01 Overall height: 250 mm Consisting of: 2 U-shaped brackets, coated 4 vibration dampers Must be ordered as accessory for use with sound attenuation housing SDG01 6042 937

Acoustic insulation housing SDG02

for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) for reducing the noise level of the unit set up outdoors Protects the unit against any weather influences Steel with aluminium zinc coating Colour: grey (RAL 9006) Dimensions (HxWxD): 1610x1200x900 Sound attenuation depending on installation and ambient conditions up to -6 dB(A)
Base set SDG02 must be ordered as accessory

6040 357

Base set SDG02

for sound attenuation housing SDG02 Overall height: 190 mm Consisting of: 2 U-shaped brackets, coated 4 vibration dampers Must be ordered as accessory for use with sound attenuation housing SDG02

Condensate drip tray KWD - SD housing acoustig insulation housing for

Belaria® SRM (4-16), compact SRM (4-16) and SHM (11-16)

for collection of the condensate

under the outdoor unit

in the acoustic insulation housing

SDG01 and SDG02

With drain port for hose connection Without support heating strip

Insulation set (inside unit)

for Belaria® SRM (4-16) Required to prevent the temperature falling beneath the dewpoint in cooling mode with flow temperatures

below +20 °C

Part No.

6040 344

6031 249

Fan convectors FWT-CT

to Belaria® SRM and compact SRM (4-16) Blower convector for heating and cooling for wall installation. Spreads warmth or cold if installed in a heating system with heat pump. Sound power level min. - max.

= 36 - 59 dB(A) Dimensions

FWT-CT (2-4): 288 x 800 x 206 (H x W x D) FWT-CT (5,6): 310 x 1065 x 224 (H x W x D)

Colour white

Weight

FWT-CT (2-4): 9 kg

FWT-CT (5,6): 14 kg

Туре	Heat output t-VL 50 °C	Cooling capacity t-VL 7 °C	Flow rate	
	W	W	l/h	
FWT-CT (2)	2900	2290	420l/h	6040 205
FWT-CT (3)	3140	2460	460l/h	6040 206
FWT-CT (4)	3960	3080	570l/h	6040 207
FWT-CT (5)	5420	4250	780l/h	6040 208
FWT-CT (6)	6450	4690	910l/h	6040 209

Suitable motorised switching or through valves see brochure "Accessories".

The minimum flow rate of the Belaria® SRM, compact SRM must be observed during the process of dimensioning.

Remote control FWT-CT must be ordered separately.

Accessories

Part No.

Remote control - FWT-CT

for Fan Coil FWT-CT (2-6) with radio transmission Operating mode selection Display of operating states Configurable day program Temperature setting

6040 359

In-wall installation box - fan convector

for fan convectors FWT-CT (2-6) for simplified piping installation Pipe inlet on top or on side Condensate connection available on bottom left or right Outside diameter 16 mm Consisting of: in-wall installation box and cover panel Cardboard cover to protect against dirt build-up during installation 4 fixing screws Material: plastic Colour: white Dimensions: 85 x 520 x 65 (H x W x D)

2067 872

Connection set AS32-2/ H

for compact mounting
of all required fittings
of a direct circuit
consisting of:
2 thermometer ball valves
Wall bracket included separately
Connection T-piece DN32
in the return flow for connecting the
sludge separator CS 32 bottom and
the expansion tank on the side
on connection set
installation option
for an overflow valve
incl. non-return valve

6039 793

Connection set AS32-2/ HW

for compact mounting of all required fittings of a direct circuit and hot water charging Consisting of: Fully assembled armature group with 2 thermometer ball valves Thermal insulation box made of EPP half-shells 3-way motor valve 2-LR230A included separately Connection T-piece DN32 in the return flow for connecting the sludge separator CS 32 bottom and the expansion tank on the side on connection set installation option for an overflow valve incl. non-return valve

Bypass valve DN 25 (1")

for installation on a HA group DN 25 Pressure range 0.1 - 0.6 bar Part No. 6046 875

Bypass valve DN 32 (11/4")

ball valve

Weight: 1.21 kg

for Belaria® SRM und compact SRM (11-16) for the installation in a HA group DN 32 Setting range 0.6-1.5 bar Max. flow rate: 1.5 m³/h with self-sealing screw connection for mounting between flow and return

6014 849

Overflow valves must close completely under the set pressure.

Sludge separator CS 25-1" with magnet

for flow rates of 1.0 - 2.0 m³/h
for flow speed of 1.0 m/s
Housing made of plastic PPA with
diffuser and partial flow removal
with 4 extra-strong Neodymium magnets
Magnets removable for draining
EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection
Any inst. orientation -360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar
Glycol proportion max.: 50 %

2063 735

Sludge separator CS 32-11/4" with magnet

for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 11/4" Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 % Weight: 1.37 kg

2063 736

Strainer PN16 B50-25-1"

Casing brass, PN 16 Connections Rp 1" Operating temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm 2046 978

Strainer PN16 B50-32-11/4"

Casing brass, PN 16 Connections Rp 11/4" Operation temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- · incl. seals and screw connections

DN	Conne	ection	kvs	ൎV [m³/h] at	
	Valve	Fitting		ΔP 50 mbar	
25	G 1½"	Rp 1"	13	2.91	6045 769
32	G 2"	Rp 11/4"	25	5.59	6045 770

Suitable motor drive

Туре	Voltage	Control	Actua-
		signal	tor run
			time

GLB341.9E 230 V / 50/60 Hz 2-/3-point 150 s 2070 331

Circulation pumps, actuators, buffer storage tanks see separate brochures

Reflex V40

In-line vessel made of sheet steel, Designed for operating overpressures up to 10 bar.

Reflex		Н	h	Α	
type	mm	mm	mm		
V 40	409	562	113	R 1"	

2057 249

Part No.

Services

Commissioning

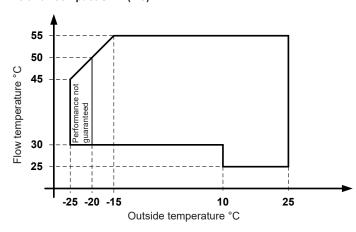
Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.

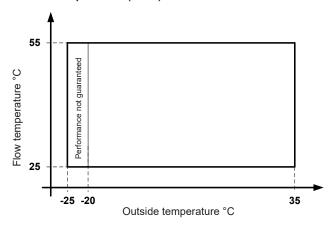
Hoval Belaria® SRM (4-16) Hoval Belaria® compact SRM (4-16)

Hoval Belaria® compact SRM (4-16)							
Туре		SRM (4)	SRM (6)	SRM (8)	SRM (11)	SRM (14)	SRM (16)
Performance data							
 Heat output A-7W35² 	kW	4.60	5.43	6.40	8.80	11.70	12.10
Output rating A-7W35 ²	COP	2.81	2.93	2.77	2.92	2.75	2.63
Heat output A2W35 ²	kW	3.27	4.69	5.80	8.56	10.30	11.70
Output rating A2W35 ²	COP	4.02	3.80	3.67	3.65	3.45	3.40
Heat output A10W35 ²	kW	4.47	6.29	7.39	11.20	14.30	17.50
Output rating A10W35 ²	COP	5.34	5.23	4.91	4.91	4.71	4.51
Cooling capacity A35W18 ¹	kW	5.90	7.30	8.40	15.10	16.10	16.80
		3.16	3.20	2.92	3.39	3.01	2.77
Output rating A35W18 ¹ Output rating A35W17 ¹	EER						
Cooling capacity A35W7 ¹	kW	4.50	5.50	6.40	11.70	12.60	13.10
Output rating A35W7 ¹	EER	2.22	2.18	1.98	2.78	2.51	2.32
Dimensions							
Outdoor unit H/W/D	mm		735/8	32/307	00/01/1	1345/9	00/320
Indoor unit H/W/D Belaria® SRM Indoor unit H/W/D Belaria® server at ASM	mm				80/344		
Indoor unit H/W/D Belaria® compact SRM	mm			1/32/6	600/728		
Weights	Len	5 4	50	50	440	440	440
Net weight of outdoor unit Net weight of indoor unit	kg	54	56	56	113	113	113
Net weight of indoor unit Belaria® SRM	ka	44	48	48	48	48	48
Belaria® compact SRM	kg kg	115	46 126	46 126	46 129	46 129	46 129
Gross weight of outdoor unit	kg	57	59	59	128	128	128
Gross weight of indoor unit	9	•			0	0	0
Belaria® SRM	kg	47	51	51	51	51	51
Belaria® compact SRM	kg	128	140	140	142	142	142
Compressor			hermetical	ly sealed, vai	riable speed o	compressor	
Refrigerant filling R 410A	kg	1.5	1.6	1.6	3.4	3.4	3.4
• Fan	Ū	axia	al, variable s	peed	2 x axi	al, variable s	speed
 Evaporator 			fins	coated alumir	nium, tubes co	opper	
Condenser type					steel plate he	-	
Condenser water content	litres	0.9	1.3	1.3	1.0	1.0	1.0
Pipe connection flow/return	R 3/1.	11/4"	11/4"	11/4"	11/4"	11/4"	11/4"
Max. volume flow Min. volume flow	m ³ /h	1.5	2.0	2.0	3.1	3.1	3.1
Min. volume flow May appear press on the heating side.	m³/h bar	0.7 3.0	0.7 3.0	0.7 3.0	0.9 3.0	0.9 3.0	0.9 3.0
Max. operat. press. on the heating sideExpansion tank volume	litres	10	10	10	10	10	10
Total water content Belaria® SRM	litres	3	5	5	5	5	5
Total water content Belaria® compact SRM	litres	4.4	5.8	5.8	5.5	5.5	5.5
Calorifier / Belaria® compact SRM	litres	180	260	260	260	260	260
Max. hot water temperature ³	°C	65	65	65	65	65	65
Operating pressure/test pressure	bar	8/13	8/13	8/13	8/13	8/13	8/13
Calorifier material					el (EN 1.4521)	
Thermal insulation material				_	PS		
Standby losses (EN 12897)	kWh/24 h	1.4	1.9	1.9	1.9	1.9	1.9
Connection, refrigerant line					0/0/0=	0/0/0=	0/0/0=
Dimension of liquid line	Inches/mm		1/4 / 6.4	1/4 / 6.4	3/8 / 9.5	3/8 / 9.5	3/8 / 9.5
Dimension of gas pipe Max length of refrigerant line	Inches/mm	30	5/8 / 15.9 30	5/8 / 15.9 30	5/8 / 15.9 30	5/8 / 15.9 30	5/8 / 15.9 30
 Max. length of refrigerant line Min. length of refrigerant line 	m m	30	30	30	30	30	30
Max. height differ. outside/indoor unit	m	20	20	20	30	30	30
	tar and agalin		20	20	00	00	00
See diagrams for areas of application for heating, hot was	ter and coolin	g.					
 Electrical data Max. power consumption during heating operation 							
Heat pump		2.4	2.6	3.3	4.8	6.2	7.1
	k\//			0.0			
• •	kW kW			2 stage 3/9	2 stage 3/9		
Emergency heating	kW kW	3		2 stage 3/9	2 stage 3/9	z stage o/o	9
Emergency heating Voltage	kW	3	2 stage 3/9	-	-		
Emergency heatingVoltageCompressor	kW V	3 230	2 stage 3/9 230	230	3 x 400	3 x 400	3 x 400
Emergency heatingVoltageCompressorFan	kW V V	3 230 230	2 stage 3/9	230 230	3 x 400 230	3 x 400 230	
 Emergency heating Voltage Compressor Fan Emergency heating 	kW V	3 230	2 stage 3/9 230 230	230 230	3 x 400	3 x 400 230	3 x 400
 Emergency heating Voltage Compressor Fan Emergency heating Frequency 	kW V V	3 230 230 230	2 stage 3/9 230	230 230 3 kW and	3 x 400 230 d 9 kW 3 x 4	3 x 400 230 00 volts	3 x 400 230
 Emergency heating Voltage Compressor Fan Emergency heating Frequency Voltage range 	kW V V	3 230 230 230 50	2 stage 3/9 230 230 50	230 230 3 kW and 50	3 x 400 230 d 9 kW 3 x 4 50	3 x 400 230 00 volts 50	3 x 400 230 50
 Emergency heating Voltage Compressor Fan Emergency heating Frequency Voltage range Operating current max. 	kW V V V Hz	3 230 230 230 50 +/- 10 %	2 stage 3/9 230 230 50 +/- 10 %	230 230 3 kW and 50 +/- 10 %	3 x 400 230 d 9 kW 3 x 4 50 +/- 10 %	3 x 400 230 00 volts 50 +/- 10 %	3 x 400 230 50 +/- 10 %
 Emergency heating Voltage Compressor Fan Emergency heating Frequency Voltage range 	kW V V	3 230 230 230 50	2 stage 3/9 230 230 50	230 230 3 kW and 50	3 x 400 230 d 9 kW 3 x 4 50	3 x 400 230 00 volts 50	3 x 400 230 50

Using a residual current circuit breaker RCCB type B, I∆n ≥ 300 mA is recommended. Country-specific regulations must be observed.

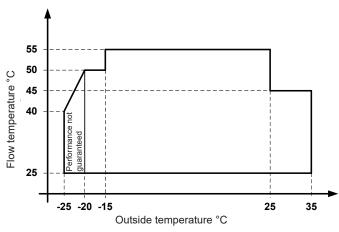

¹ Cooling capacity and EER at nominal load (EN 14511)

² Heat output and COP at nominal load (EN 14511)

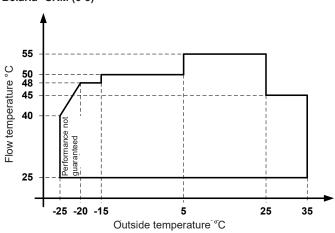

³ with electric supplemental heating

Diagrams of areas of application Heating

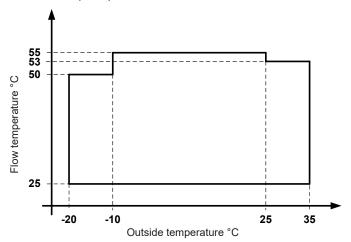
Belaria® SRM (4-8) Belaria® compact SRM (4-8)

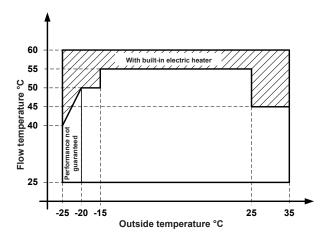


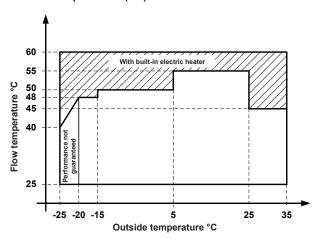
Belaria® SRM (11-16) Belaria® compact SRM (11-16)

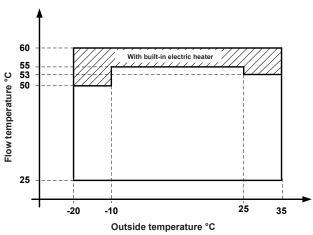


Hot water

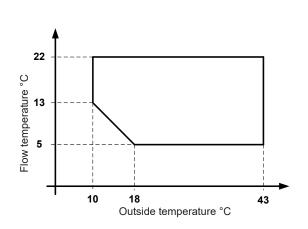



Belaria® SRM (6-8)

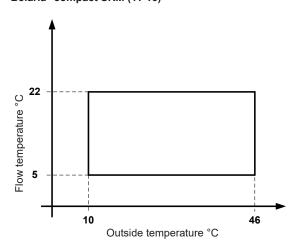

Belaria® SRM (11-16)


Belaria® compact SRM (4)

Belaria® compact SRM (6-8)



Belaria® compact SRM (11-16)



Cooling

Belaria® SRM (4-8) Belaria® compact SRM (4-8)

Belaria® SRM (11-16) Belaria® compact SRM (11-16)

Hoval Belaria® SRM Hoval Belaria® compact SRM

Sound pressure level - sound power level³

The sound pressure levels indicated below apply if the outdoor unit is placed at a building facade. These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

The sound pressure level is dependent on the place of measurement within a sound field and describes the sound intensity at this point. In contrast, the sound power level is a characteristic of the sound source and therefore does not change with distance; it describes the totality of sound power of the relevant source radiated in

Structure-borne sound

The indoor unit must be attached to the wall with a sound insulation dowel with collar. The bases and consoles for the outdoor unit must be erected/installed with vibration-damping against the structural shell.

Belaria® SRM		(4)	(6)	(8)	(11)	(14)	(16)
Outdoor unit							
 Sound power level in heating operation ^{2, 3} 	dB(A)	57	58	58	58	58	60
 Sound pressure level in heating operation at 5 m ^{1, 2, 3} 	dB(A)	38	39	39	39	39	41
- Sound pressure level in heating operation at 10 m $^{\rm 1,2,3}$	dB(A)	32	33	33	33	33	35
Indoor unit							
Sound pressure level at 1 m	dB(A)	28	28	28	33	33	33

¹ The sound pressure levels indicated apply if the outdoor unit is placed at a building facade. These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

Pressure expansion tank

The indoor unit is equipped with an expansion tank (flat shape) with a volume of 10 I, pre-pressure 1 bar

				Factory setting	9			
Pre-pressure 1	bar	0.5	0.8	1.0	1.2	1.5	1.8	2.1
Capacity	1	5.5	4.5	4.0	3.5	2.5	2.0	0.7
Maximum possible system height Hp ²	m	2	5	7	9	12	15	18

¹ Pre-pressure = system height + 0.3 bar. The pre-pressure should be adjusted to the system height.

$$V_n = V_A \times f \times X$$
 (litres)

V_n = expansion volume (litres)

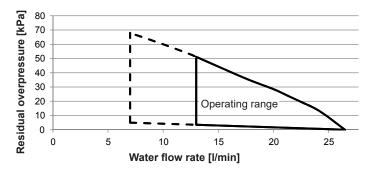
V_A = system content at + 10 °C f = thermal expansion factor (45°), f = 0.01

X = add-on factor, X = 3

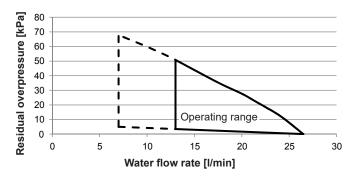
	System	V_A	V_{n}
System content	5 kW	120 I	3.6 I expansion quantity
(underfloor heating system)	6 kW	140 I	4.2 I expansion quantity
	7 kW	160 I	4.8 I expansion quantity
	8 kW	180 I	5.4 I expansion quantity
	9 kW	200 I	6.0 I expansion quantity

If the capacity of the installed expansion tank is not sufficient, an additional tank must be installed outside the unit.

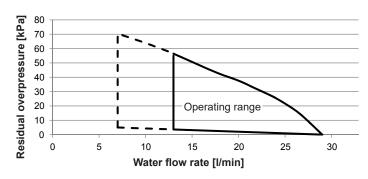
The sound levels apply in whisper mode. The values are increased at full load by + 4 dB(A) for Belaria® SRM (4-8) and by 6 dB(A) for the Belaria® SRM (11-16).


The sound values apply with a clean evaporator. These values are temporarily exceeded before defrosting.

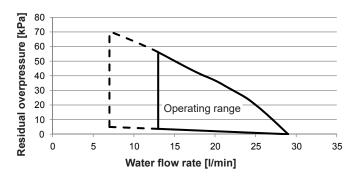
² System pressure Hp = hydrostatic pressure of the system, i.e. height from the centre of the tank to the highest air-bleeding point of the system.

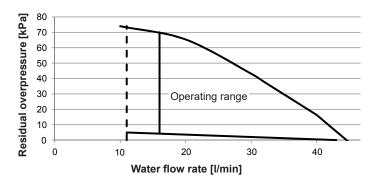

Pump characteristic curves Belaria® SRM (4-16)

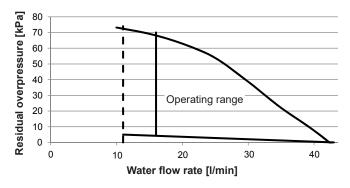
Belaria® SRM (4)

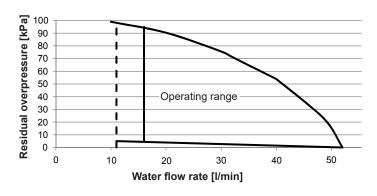


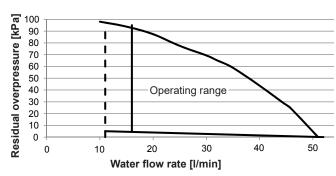
Pump characteristic curves Belaria® compact SRM (4-16)


Belaria® compact SRM (4)


Belaria® SRM (6,8)

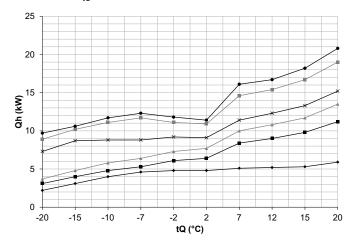

Belaria® compact SRM (6,8)


Belaria® SRM (11)

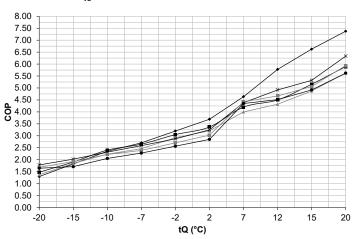

Belaria® compact SRM (11)

Belaria® SRM (14,16)

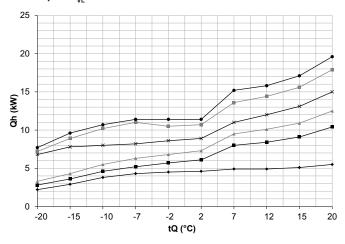
Belaria® compact SRM (14,16)

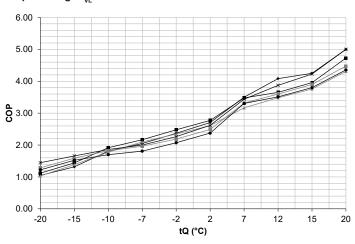


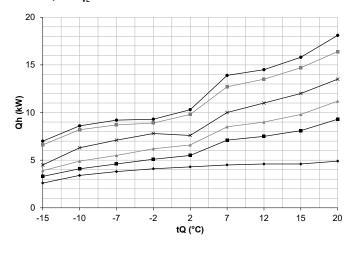
Performance data - heating

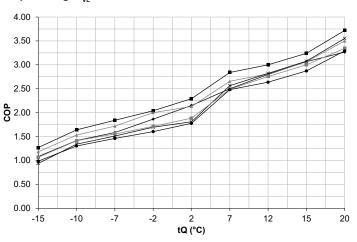

Maximum heat output allowing for defrosting losses

Hoval Belaria® SRM (4-16), Belaria® compact SRM (4-16)


Heat output - t_{VL} 35 °C


Output rating - t_{VL} 35 °C


Heat output - t_{VL} 45 °C


Output rating - t_{VL} 45 °C

Heat output - $t_{_{VL}}$ 55 °C

Output rating - $t_{_{VL}}$ 55 °C

- → Belaria® SRM (4)
- Belaria® SRM (6)
- → Belaria® SRM (8)
- → Belaria® SRM (11)
- Belaria® SRM (14)
- Belaria® SRM (16)

- tVL = heating flow temperature (°C)
- tQ = source temperature (°C)
- Qh = heat output at full load (kW), measured in accordance with standard EN 14511
- COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Performance data - heating

Hoval Belaria® SRM (4-16), Belaria® compact SRM (4-16)

Indications acc. to EN14511

OC OC DAY DAY COD DAY DAY COD DAY DAY COD DAY		Qh	(16) P
	W COP	kW	kW COP
	.9 1.82	9.6	5.6 1.71
	5.0 2.08 7 2.44	10.6 11.8	5.8 1.84 5.3 2.25
	.5 2.68	12.6	5.0 2.53
-2 48 14 356 62 18 344 74 23 324 96 29 329 114 3	.7 3.06	12.1	4.2 2.86
2 4.9 1.2 4.12 6.6 1.8 3.74 7.9 2.3 3.51 9.5 2.6 3.71 11.2 3	.3 3.46	11.7	3.7 3.21
	.1 4.92	16.6	3.5 4.81
	0 5.38	17.3	3.4 5.16
	.0 5.85 .9 6.75	18.8 21.5	3.4 5.60 3.3 6.43
	.3 1.70	9.7	5.9 1.64
-15 3.1 1.7 1.80 4.0 2.1 1.94 4.8 2.6 1.82 8.7 4.3 2.03 10.2 5	.3 1.91	10.6	6.2 1.71
	.0 2.20	11.7	5.7 2.04
	.9 2.40	12.3	5.4 2.28
<u> </u>	.1 2.72 .6 3.05	11.8 11.4	4.6 2.55 4.0 2.85
	.3 4.36	16.1	3.7 4.30
	.3 4.70	16.7	3.7 4.54
15 5.3 0.8 6.53 9.8 1.9 5.12 11.7 2.4 4.80 13.3 2.5 5.44 16.7 3	.3 5.11	18.2	3.7 4.92
	5.2 5.88	20.8	3.7 5.64
	5.6 1.57	9.6	6.3 1.52
	5.6 1.75 5.4 1.99	9.9 11.2	6.2 1.59 6.0 1.87
	5.3 2.14	12.0	5.9 2.05
-2 46 17 271 60 21 282 73 27 266 88 35 251 108 4	.5 2.41	11.5	5.1 2.27
⁴⁰ 2 4.7 1.5 3.05 6.2 2.1 3.00 7.4 2.6 2.83 8.6 3.1 2.75 10.5 3	.9 2.69	11.1	4.4 2.52
	.7 3.74	15.5	4.2 3.71
	6 4.07	16.1	4.1 3.97
	.6 4.43 .6 5.10	17.5 20.0	4.1 4.30 4.1 4.94
	6.6 1.28	7.7	6.3 1.22
	.6 1.60	9.6	6.3 1.53
	.6 1.83	10.7	6.3 1.71
	.6 1.97	11.4	6.3 1.82
45	.8 2.17 .3 2.45	11.4 11.4	5.5 2.06 4.8 2.39
	.1 3.29	15.2	4.6 2.39
	.0 3.59	15.8	4.5 3.51
	.0 3.90	17.1	4.5 3.81
	.0 4.48	19.6	4.5 4.35
		-	62 140
	5.6 1.47 5.6 1.65	8.8 9.7	6.3 1.40 6.3 1.55
	5.6 1.75	10.3	6.3 1.63
-2 43 21 203 56 24 235 67 30 222 86 43 200 102 5	.2 1.95	10.4	5.8 1.81
2 4.4 1.9 2.29 6.0 2.3 2.61 7.2 2.9 2.45 8.4 3.8 2.21 10.3 4	.7 2.19	11.0	5.4 2.04
	.6 2.93	14.5	5.1 2.86
	.4 3.19	15.1	5.0 3.05
	.5 3.46 .4 3.87	16.4 18.8	5.0 3.31 5.0 3.78
	.2 1.06	7.0	7.1 0.98
	.8 1.41	8.6	6.6 1.31
-7 3.8 2.4 1.58 4.6 2.5 1.82 5.5 3.2 1.71 7.1 4.7 1.52 8.7 5	.6 1.56	9.2	6.3 1.46
	.2 1.70	9.3	5.8 1.62
	1.90	10.3	5.8 1.78
	.1 2.52 .9 2.75	13.9 14.5	5.6 2.48 5.5 2.64
	.9 2.99	15.8	5.5 2.86
	.9 3.33	18.1	5.5 3.27

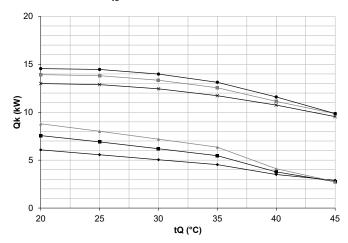
tVL = heating flow temperature (°C)

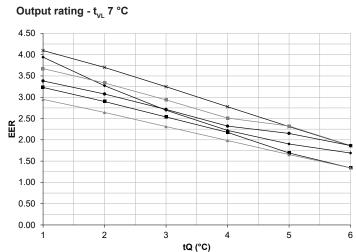
tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

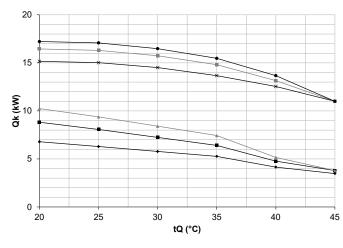
P = power consumption of the overall unit (kW)

incl. high-efficiency pump, measured in accordance with EN 14511

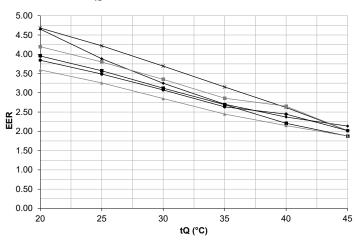

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

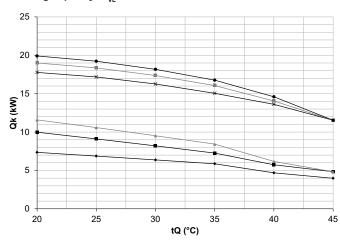

Performance data - cooling

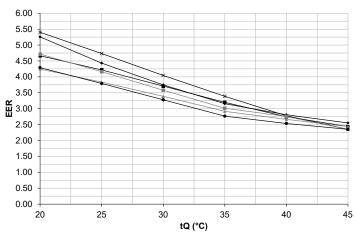
Maximum cooling capacity


Hoval Belaria® SRM (4-16), Belaria® compact SRM (4-16)

Cooling capacity - t_{VL} 7 °C




Cooling capacity - $t_{_{VL}}$ 13 °C



Cooling capacity - t_{VL} 18 °C

Output rating - t_{VL} 18 °C

- → Belaria® SRM (4)
- Belaria® SRM (6)
- → Belaria® SRM (8)
- Delaria Sitivi (0)
- → Belaria® SRM (11)
- -■- Belaria® SRM (14)
- Belaria® SRM (16)

- tVL = cooling water flow temperature (°C)
- tQ = source temperature (°C)
- Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511
- EER = Energy Efficiency Rate for the overall unit in accordance with standard EN 14511

Performance data - cooling

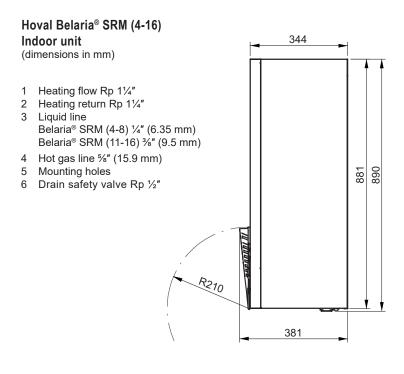
Hoval Belaria® SRM (4-16), Belaria® compact SRM (4-16)

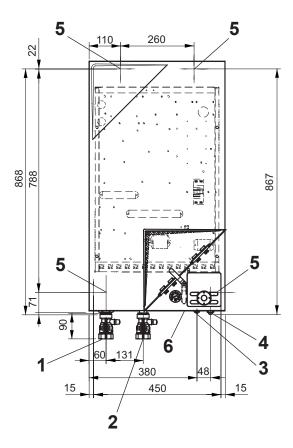
Indications acc. to EN14511

Type tVL °C	tQ °C	Qk kW	(4) P kW	EER	Qk kW	(6) P kW	EER	Qk kW	(8) P kW	EER	Qk kW	(11) P kW	EER	Qk kW	(14) P kW	EER	Qk kW	(16) P kW	EER
	20	6.1	1.5	3.94	7.6	2.3	3.23	8.8	3.0	2.95	13.0	3.2	4.10	13.9	3.8	3.67	14.6	4.3	3.38
	25	5.6	1.7	3.27	6.9	2.4	2.90	8.0	3.0	2.64	12.9	3.5	3.70	13.8	4.1	3.34	14.5	4.7	3.08
7	30	5.0	1.9	2.70	6.2	2.4	2.54	7.2	3.1	2.31	12.4	3.8	3.25	13.3	4.5	2.94	14.0	5.2	2.71
7	35	4.5	2.0	2.22	5.5	2.5	2.18	6.4	3.2	1.98	11.7	4.2	2.78	12.6	5.0	2.51	13.1	5.7	2.32
	40	3.5	1.8	1.90	3.8	2.2	1.69	4.1	2.5	1.65	10.7	4.7	2.31	11.1	4.8	2.32	11.6	5.4	2.15
	45	2.9	1.7	1.69	2.8	2.1	1.34	2.8	2.1	1.34	9.5	5.1	1.86	9.9	5.3	1.87	9.9	5.3	1.87
	20	6.5	1.5	4.30	8.2	2.3	3.57	9.5	2.9	3.26	13.8	3.2	4.31	14.9	3.9	3.88	15.7	4.4	3.57
	25	5.9	1.7	3.58	7.5	2.3	3.22	8.7	3.0	2.93	13.7	3.5	3.88	14.9	4.2	3.53	15.6	4.8	3.24
10	30	5.4	1.8	2.96	6.7	2.4	2.82	7.8	3.0	2.57	13.2	3.9	3.40	14.3	4.6	3.10	15.0	5.3	2.86
10	35	4.9	2.0	2.46	5.9	2.5	2.42	6.9	3.1	2.21	12.4	4.3	2.91	13.5	5.1	2.65	14.1	5.8	2.45
	40	3.8	1.8	2.13	4.3	2.2	1.94	4.6	2.4	1.89	11.4	4.7	2.42	12.0	4.9	2.46	12.5	5.5	2.27
	45	3.2	1.7	1.90	3.2	2.0	1.59	3.2	2.0	1.59	10.1	5.2	1.95	10.6	5.4	1.98	10.6	5.4	1.98
	20	6.8	1.5	4.65	8.8	2.2	3.96	10.2	2.9	3.59	15.2	3.2	4.68	16.5	3.9	4.20	17.2	4.5	3.84
	25	6.3	1.6	3.88	8.1	2.3	3.57	9.4	2.9	3.26	15.0	3.6	4.22	16.3	4.3	3.80	17.1	4.9	3.49
13	30	5.8	1.8	3.25	7.2	2.3	3.12	8.4	3.0	2.85	14.5	3.9	3.69	15.7	4.7	3.35	16.5	5.4	3.07
	35	5.3	2.0	2.70	6.4	2.4	2.69	7.4	3.0	2.45	13.7	4.3	3.15	14.8	5.2	2.86	15.5	5.9	2.64
	40	4.2	1.8	2.37	4.8	2.2	2.21	5.2	2.4	2.15	12.5	4.8	2.62	13.2	5.0	2.65	13.7	5.6	2.45
	45	3.5	1.6	2.13	3.8	2.0	1.88	3.8	2.0	1.88	11.0	5.5	2.02	11.0	5.5	2.02	11.0	5.5	2.02
	20	7.0	1.4	4.87	9.3	2.2	4.20	10.8	2.8	3.84	16.1	3.3	4.94	17.5	4.0	4.41	18.3	4.5	4.03
	25	6.5	1.6	4.10	8.5	2.2	3.82	9.9	2.8	3.48	16.0	3.6	4.44	17.3	4.3	3.99	18.1	5.0	3.65
15	30	6.0	1.8	3.43	7.6	2.3	3.35	8.8	2.9	3.05	15.4	4.0	3.89	16.7	4.8	3.51	17.5	5.4	3.22
	35	5.5	1.9	2.88	6.7	2.3	2.88	7.8	3.0	2.63	14.5	4.4	3.32	15.7	5.2	3.00	16.4	6.0	2.76
	40	4.4	1.7	2.53	5.1	2.1	2.41	5.6	2.4	2.34	13.3	4.8	2.76	14.0	5.0	2.78	14.5	5.7	2.57
	45	3.7	1.6	2.29	4.2	2.0	2.09	4.2	2.0	2.09	11.4	5.3	2.14	11.4	5.3	2.14	11.4	5.3	2.14
	20 25	7.4 6.9	1.4 1.6	5.26 4.43	10.0 9.1	2.1 2.2	4.66 4.22	11.6 10.6	2.7 2.8	4.25 3.84	17.8 17.2	3.3 3.6	5.40 4.73	19.0 18.4	4.0	4.71 4.16	19.9 19.2	4.6 5.1	4.29 3.79
	30	6.4			8.2	2.2	3.71	9.5	2.8	3.39	16.3		4.73		4.4		18.2	5.1 5.5	
18	35	5.9	1.7 1.9	3.75 3.16	0.2 7.3	2.2	3.20	9.5 8.4	2.0	2.92	15.1	4.0 4.4	3.39	17.4 16.1	4.9 5.3	3.58 3.01	16.8	5.5 6.1	3.28 2.77
	35 40	5.9 4.7	1.9		7.3 5.7	2.3	2.75	6.2			13.6	4.4		14.1	5.3 5.1			5.8	
	45	4.7	1.7	2.81 2.55	5. <i>1</i> 4.8	2.1	2.75	4.8	2.3	2.66 2.44	11.5		2.78 2.35	11.5	4.9	2.75 2.35	14.6 11.5	5.6 4.9	2.53 2.35
	20	8.0	1.3	5.96	11.0	2.0	5.32	12.8	2.6	4.85	19.8	4.9 3.3	5.93	21.2	4.9	5.14	22.2	4.8	4.65
	25	7.5	1.5	5.05	10.1	2.1	4.87	11.8	2.7	4.44	19.0	3.7	5.20	20.5	4.5	4.52	21.4	5.2	4.03
	30	7.0	1.6	4.26	9.1	2.1	4.27	10.5	2.7	3.90	18.2	4.1	4.44	19.4	5.0	3.90	20.3	5.7	3.55
22	35	6.5	1.8	3.65	8.0	2.1	3.70	9.3	2.8	3.36	16.8	4.5	3.72	17.9	5.5	3.28	18.7	6.2	3.00
	40	5.2	1.6	3.27	6.7	2.0	3.28	7.1	2.3	3.16	15.2	5.0	3.05	15.7	5.2	3.01	16.3	5.9	2.76
	45	4.5	1.5	3.00	5.8	2.0	2.99	5.8	2.0	2.99	12.1	4.4	2.76	12.1	4.4	2.76	12.1	4.4	2.76
	40	4.0	1.0	3.00	5.0	2.0	2.55	5.0	2.0	2.00	14.1	7.7	2.10	14.1	7.7	2.10	14.1	7.7	2.10

tVL = cooling water flow temperature (°C)

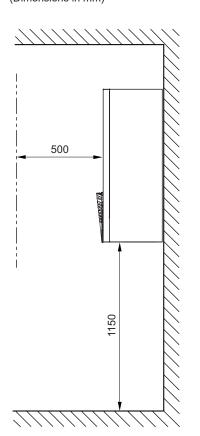
tQ = source temperature (°C)

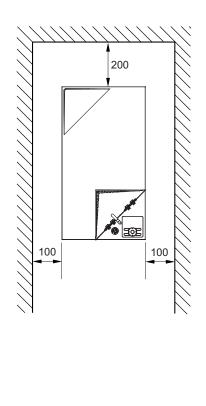

Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511

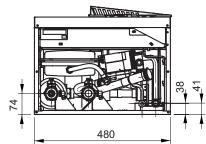

P = power consumption of the overall unit (kW) incl. high-efficiency pump,

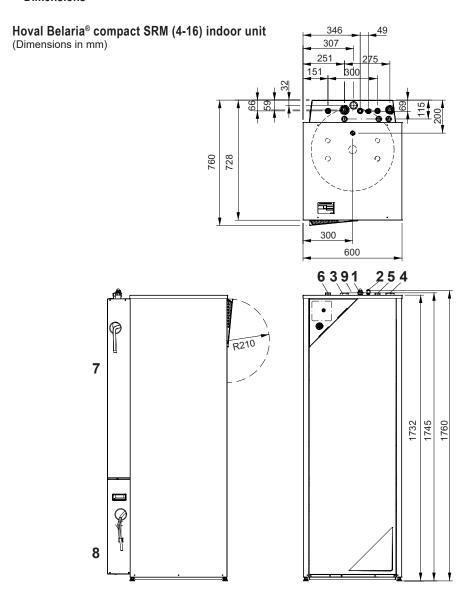
measured in accordance with EN 14511

EER = Energy Efficiency Rate for the overall unit in accordance with standard EN 14511

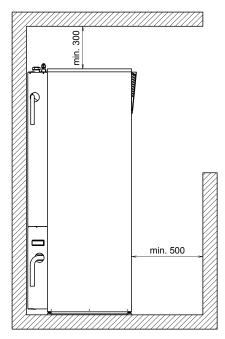

Take account of daily power cuts! see Engineering






Space requirement for maintenance work and ventilation Indoor unit

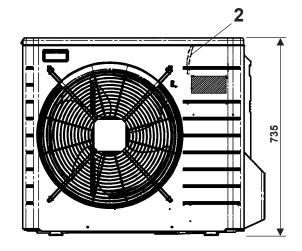
(Dimensions in mm)

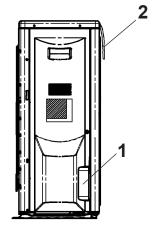

- Hot gas line %" (15.9 mm)
- Liquid line Belaria® SRM (4-8) ¼" (6.35 mm) Belaria® SRM (11-16) ¾" (9.5 mm)

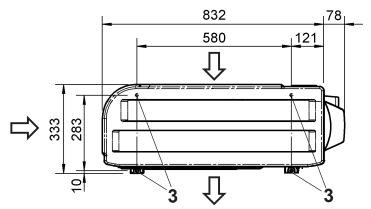
Union nut

- Heating flow R 11/4"
- Heating return R 11/4"
- Cold water connection R 1"
- Hot water connection R 1"
- Drain safety valve
- 8 Condensate drain (cooling)
- Cable entry point

Space requirement for maintenance work and ventilation Indoor unit


(Dimensions in mm)




Hoval Belaria® SRM (4-8), Hoval Belaria® compact SRM (4-8) Outdoor unit

(Dimensions in mm)

- 1 Connections for refrigerant lines
- 2 Outdoor temperature sensor
- 3 Hole for fastening bolts M8 or M10

· There must be adequate space for the out-

vide cover (e.g. roof, see Accessories).

Observe the maximum permissible roof

base and any snow load).

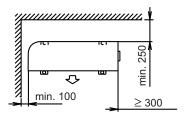
condensation. (see base plans)

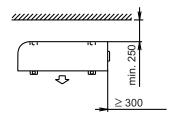
blowing over in windy areas.

load without fail! (weight of unit, concrete

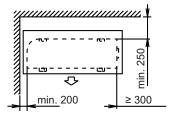
The outdoor unit must be placed on feet at least 250 mm / 50 mm high. There must

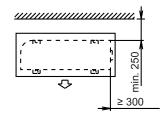
be a gravel bed under it to discharge the

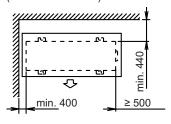

The external unit must be secured against

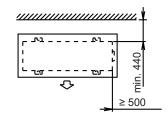

let (approx. 1 m) to route off the cooled air. The outdoor unit must be protected against heavy snowfall. If necessary, pro-

■ Dimensions


Space requirement

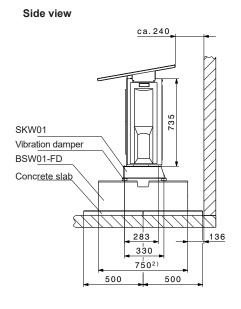

Space requirement for Belaria® SRM, Belaria® compact SRM outdoor unit without roof (Dimensions in mm)


Space requirement for Belaria® SRM, Belaria® compact SRM outdoor unit with roof (Dimensions in mm)

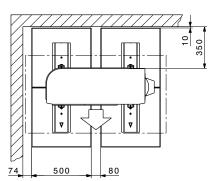


Space requirement for Belaria® SRM, Belaria® compact SRM with acoustic insulation housing

(Dimensions in mm)


Dimensions of protective roof for outdoor unit

Belaria® SRM	W	D
type		
(4-8)	1102	577

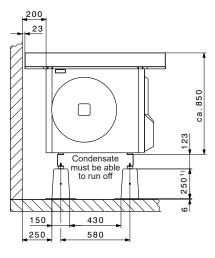

Base plans for Belaria® SRM (4-8), Belaria® compact SRM (4-8) (Dimensions in mm)

Concrete base - firm base

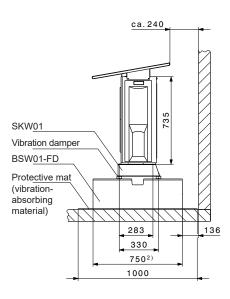
200 23 Condensate must be able to run off 150 430 250 580

View from above

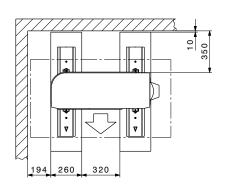
- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950
- Prevention of the transmission of structure-borne sound to the roof is very important.
 Specialists may need to be consulted, depending on the specific roof design.
- The outdoor unit must not be installed directly above bedrooms!
- · The outdoor unit must be attached to the base using 4 vibration dampers M8 and concrete dowels (see Accessories).
- The outdoor unit must be protected against heavy snowfall. If necessary, provide a cover.
- Observe the maximum permissible roof load without fail! (weight of unit, concrete base and any snow load).


Space requirement

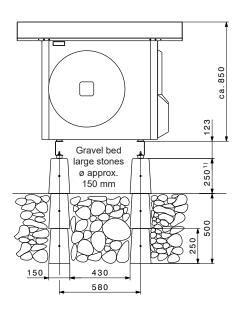
Base plans for Belaria® SRM (4-8), Belaria® compact SRM (4-8)

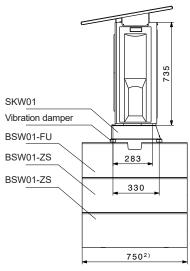

(Dimensions in mm)

Concrete base - flat roof

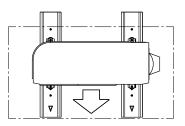

Front view

Side view

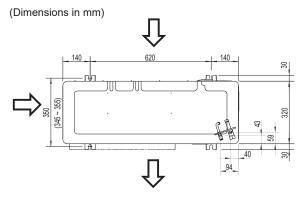

View from above

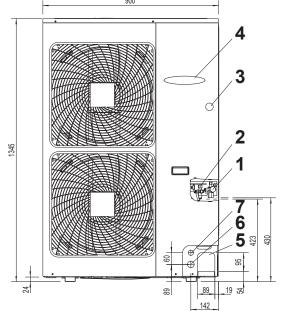

- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950

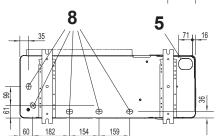
Concrete base - gravel bed

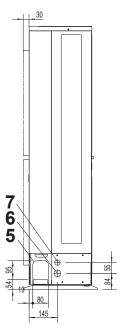

Front view

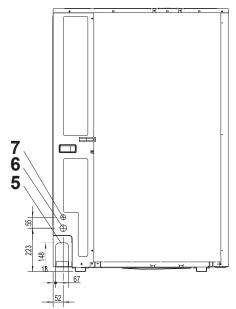
Side view

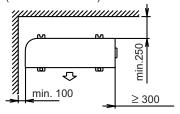

View from above



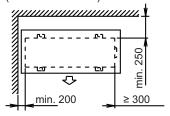

- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950

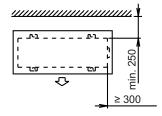

Space requirement

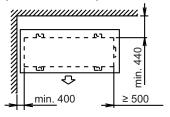

Hoval Belaria® SRM (11-16), Hoval Belaria® compact SRM (11-16) **Outdoor unit**

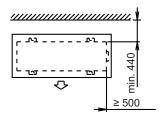


- Hot gas connection
- 2 Liquid connection
- 3 Maintenance aperture (under the cover)
- Electrical connection (in the control box)
 Inlet opening for refrigerant lines
- Feed-through for power supply
- Feed-through, control connection cable
- Condensate outlet


Space requirement


Space requirement for Belaria® SRM, Belaria® compact SRM outdoor unit without roof (Dimensions in mm)


Space requirement for Belaria® SRM, Belaria® compact SRM outdoor unit with roof (Dimensions in mm)



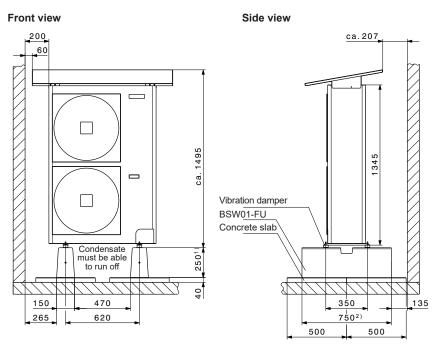
Space requirement for Belaria® SRM, Belaria® compact SRM with acoustic insulation housing

(Dimensions in mm)

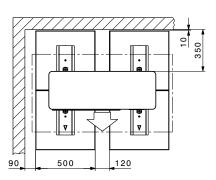
There must be adequate space for the outlet (approx. 1 m) to route off the cooled air.

The outdoor unit must be protected against heavy snowfall. If necessary, provide a cover.

Observe the maximum permissible roof load without fail! (weight of unit, concrete base and any snow load).


The outdoor unit must be placed on feet at least 250 mm / 50 mm high. There must be a gravel bed under it to discharge the condensation. (see base plans)

Dimensions of protective roof for outdoor unit

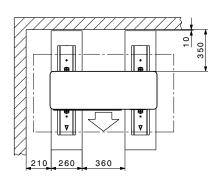

Belaria® SRM	В	Τ	
type			
(11-16)	1180	660	

Base plans for Belaria® SRM, Belaria® compact SRM (11-16) (Dimensions in mm)

Concrete base - firm base

View from above

- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950
- The outdoor unit must be attached to the base using 4 vibration dampers M8 and concrete dowels (see Accessories).
- · If the outdoor unit is exposed to strong winds, the bases must be extended to approx. 700 mm and anchoring cables fitted.

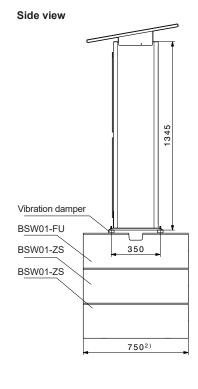


Base plans for Belaria® SRM, Belaria® compact SRM (11-16) (Dimensions in mm)

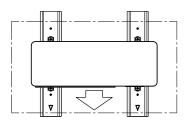
Concrete base - flat roof

Front view Side view 200 ca. 207 60 Vibration damper BSW01-FD Protective mat (vibrationabsorbing Condensate must be able to run off material) 150 470 350 750²

View from above


- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950
- Prevention of the transmission of structure-borne sound to the roof is very important.
 Specialists may need to be consulted, depending on the specific roof design.
- · The outdoor unit must not be installed directly above bedrooms!
- The outdoor unit must be attached to the base using 4 vibration dampers M8 and concrete dowels (see Accessories).
- The outdoor unit must be protected against heavy snowfall. If necessary, provide a cover (see Accessories).
- · Observe the maximum permissible roof load without fail! (weight of unit, concrete base and any snow load).
- If the outdoor unit is exposed to strong winds, the bases must be extended to approx. 700 mm and anchoring cables fitted. In addition, wind
 deflectors must be installed.

135


Concrete base - gravel bed

Front view

Gravel bed large stones ø approx. 150 mm

View from above

- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950

Engineering

Requirements and directives

The general requirements and directives listed in the Chapter Engineering apply.

Set-up

General comments

- The distance between the inside and outdoor unit must be as short as possible. Only short and simple routing of refrigerant lines guarantees cost effectiveness.
- The required minimum length for the lines between the outside and indoor unit is 3 m, and the lines must not be shorter than this. The maximum permissible length of the lines between the outdoor and indoor unit is 30 m (4-8) and 50 m (11-16) and must not be exceeded. The maximum permissible height difference between outside and indoor unit is 20/30 m. The maximum permissible length of the lines between calorifier and indoor unit is 10 m. The cable of the tank sensor must not be shortened. It is essential to clarify details of the installation location and line routing with Hoval!

Indoor unit

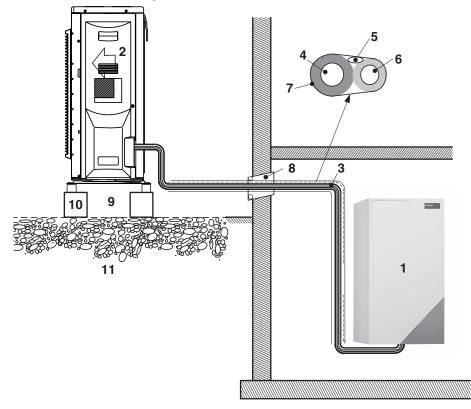
- The indoor unit of the Hoval Belaria® SRM air/water heat pump system can be mounted on the wall in the boiler room using a sound insulation dowel with collar.
- The installation location must be selected in accordance with the valid requirements and directives.
- The installation must be free from dust or other foreign matter which could lead to contamination.
- Where possible, the installation location should be outside noise-sensitive areas of the building and equipped with a soundabsorbing door.

- The heating supply and return should be connected flexibly in structures which are sensitive with regard to noise emissions (see accessories).
- Access for the purpose of operation and maintenance must be ensured.
- Rooms with high air humidity, for example laundry rooms, are not suitable installation locations (dewpoint <10 °C).

The installation of a magnetic sludge separator is mandatory.

Outdoor unit

The outdoor unit is installed outdoors. The installation location must be selected carefully. It is essential that the following ancillary conditions are met:


- The subsoil in the installation location must be sufficiently stable to bear the weight of the unit and its vibration in operation.
- The location should have adequate space for installation, maintenance and cleaning of the unit (see dimensions "Space requirements").
- As condensate flows out of the outdoor unit, a gravel bed to absorb the condensate must be installed under it. Do not place anything which is sensitive to moisture under the unit.
- Due to the sound emissions, the installation location should not be beneath living-room or bedroom windows and be far enough away from neighbouring buildings (perform calculation).
- The selected location should be such that the air blown out by the unit does not bother occupants of the building or neighbours.
- No parts and plants at risk of frost damage are allowed to be on the blow-out side.

- Installation on a wall console is not suitable in the case of lightweight walls. Lightweight walls can increase sound emissions and transmit structure-borne sound.
- It is essential to avoid air short-circuiting.
 The space necessary for intake and outlet must always be provided (see space requirements).
- The installation location must be selected so that the air intake and outlet are not blocked or obstructed by snow, leaves, etc.
- Installation in wall niches is not recommended (air short circuit, sound echo).
- The units cannot be installed one above the other.
- Install the units, the mains cables and the branch wiring at least 3 m away from TV sets and radios. This should prevent interference with picture and sound.
- The intake air must be completely free from aggressive substances such as ammonia, sulphur, chlorine etc.
- Install the outdoor unit so that the intake side faces the wall and is not directly exposed to the wind.
- Never install the outdoor unit in a place where the intake side is directly exposed to the wind
- Fit a deflector plate on the air outlet side of the outdoor unit to prevent exposure to the wind
- In areas with heavy snowfall, select an installation location where snow cannot impair the operation of the unit (cover).
- Install the unit at sufficient height from the ground to ensure that the unit is not covered by snow and freezing condensate cannot impair operation (see separate base plans).
 - 1 Indoor unit
- 2 Outdoor unit (evaporator/fan/compressor)
- 3 Refrigerant connecting line
- 4 Hot gas line with thermal insulation
- 5 1 x communication line 4-pole, 1 x electrical power supply outdoor unit SRM (4-8) 3-pole, SRM (11-16) 5-pole, 1 x connection line condensate drip tray heater 2-pole (optional),
 - 1 x electrical power supply condensate drip tray heater 3-pole (optional) if separate protection necessary
- 6 Refrigerant liquid line with thermal insulation
- 7 Wrapping or duct (on site)
- 8 PE casing tube Ø at least 100 mm with sealing (on site). All casing tubes for the lines must be routed straight (it must be possible to look down the tube and see the other end!).
- 9 Condensate
- 10 Base or paving slab to be provided on site (The height is to be determined depending on the climate zone, recommended height >250 mm)
- 11 Drainage (on site)

Line length between outdoor unit and indoor unit Hoval Belaria® SRM type (4-8) (11-16)

	71	,	,	`
Minimum line	length	3 m	ı	3 m
Maximum per length	rmissible	30 r	n	50 m
Maximum pe height differe		20 r	n	30 m

Cross-section of connecting line

Engineering

Condensate (outdoor unit)

- · Condensate must be able to run off freely.
- Use a condensate drip tray if the condensate has to be drained off collectively (option).
- It is essential to insulate the condensate hose from the tray, and if necessary, equip the hose with trace heating.

Refrigerant connecting lines

- The refrigerant connecting lines must be installed by qualified technicians.
- The line dimensions must be precisely adhered to (see also Section "Prices"; refrigerant connecting lines).
- The inside and outdoor unit, with the hot gas and liquid line, must be fitted professionally with thermal insulation.

Wall lead-through, protective pipe for routing of the lines

The wall lead-through and the protective pipe (Ø min. 100 mm) for the connecting lines must be routed with no changes of direction, executed professionally and sealed.

The lines must not be concreted in, as the vibrations can generate structure-borne sound. In the external area, the protective pipes must be manufactured from UV-resistant material.

Room cooling

- Room cooling can be effected with fan convectors and is recommended. The connection lines for the fan convectors must have condensation-proof insulation. In addition, the condensate from the fan convectors must be drained off.
- Optimum comfort can be achieved with an additional Hoval HomeVent comfort ventilation unit with the CoolVent option.
- We do not recommend the use of panel heating for room cooling. Various criteria such as temperatures below the dewpoint or the temperature profile must be allowed for and can lead to costly consequential damage in the case of inadequate planning or incorrect use. We recommend that you consult Hoval.

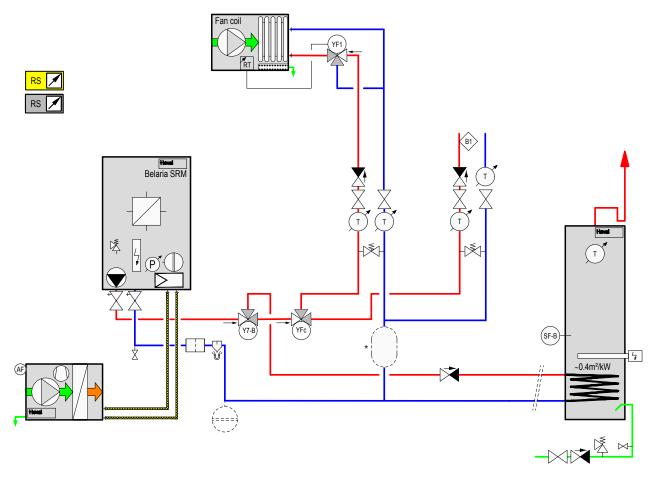
Electric connecting cables

- The electric connecting cables on the outdoor unit must be connected flexibly.
- Taking advantage of the special reduced tariffs offered by local energy companies for heat pump systems often means interrupted operation. For example, within any 24-hour period, the power supply may be interrupted for 3 periods of 2 hours each. This must be taken into account when dimensioning and planning the heat pump.
- The trace heating tape must be connected externally in accordance with applicable regulations and protected by a ground fault circuit interrupter.

Necessity of an oil separator

If the outdoor unit is placed lower than the indoor unit, an oil separator must be bent or installed in the hot gas line for each 10 m of height difference (siphon). The oil separator prevents the compressor oil flowing back after switching off and thus slugging which could damage the compressor.

Further guidelines see "Engineering"


■ Examples

Hoval Belaria® SRM

Air/water heat pump with

- calorifier
- cooling Fan Coil
- 1 direct circuit

Hydraulic schematic BBAAE020

* Additional volume for defrosting process

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

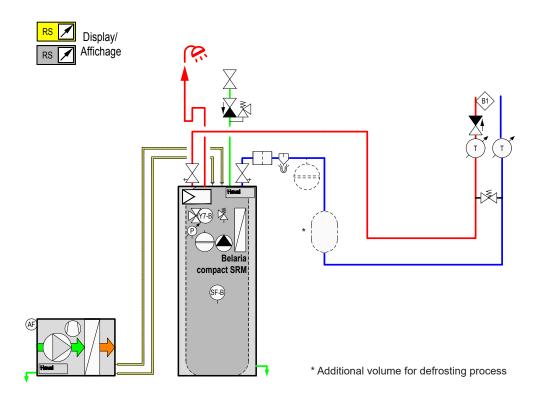
В1 Flow temperature guard (if required)

AF YF1 Outdoor sensor Actuator Fan Coil

Switching valve (Belaria® SRM) Y7-B Switching valve (Fan Coil) Calorifier sensor YFc SF-B

Burner connection

Option BR RT External room/humidity thermostat


■ Examples

Hoval Belaria® compact SRM

Air/water heat pump with

- integrated calorifier
- 1 direct circuit

Hydraulic schematic BBABE010

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

AF Y7-B Outdoor sensor

Switching valve (Belaria® SRM)
Calorifier sensor

SF-B

Description

Hoval Belaria® SHM Modulating heat pump system operating with 2 compressors in series for heating and providing hot water

High-temperature split system consisting of indoor unit and outdoor unit.

Modulation range approx. 30-100 %

Indoor unit

- · Compact unit for floor mounting
- Casing made from painted, galvanised sheet steel. Colour grey metallic
- Condenser stainless steel/Cu, filled with refrigerant R134a
- Speed-controlled high-efficiency pump controlled by the indoor unit Δt
- · Pressure expansion tank 12 litres
- · Pressure gauge
- Cut-off valves for heating flow and return with flexible hose (mounted), safety temperature limiter, safety valve
- Water filter, air-bleeding valve, overpressure valve
- Controller supplied separately for wall mounting with heating and calorifier function
- · Electrical box
- · Flow and return sensor installed
- · Filling and drain valve
- Sensor for hot water preparation supplied (can not be shortened)

Outdoor unit

- DHW heating sensor included (cannot be shortened)
- · Compact unit for outdoor installation
- Casing made from painted, galvanised sheet steel, colour silk grey (similar to RAL 7044)
- Speed-controlled scroll compressor
- Two speed-controlled fans
- Coated Al/Cu finned-tube evaporator
- Electronic expansion valve
- Four-way valve for defrosting
- Filled with refrigerant R 410 A
- · Shut-off valves on the refrigerant side
- · Electrical box, connection on the right
- Outdoor sensor fitted

Connections, refrigerant line

- · Indoor unit on the rear, left or right
- · Outdoor unit on the right side
- Hot gas line 15.9 mm (5%") liquid line 9.5 mm (3/8")

Condensate drain

- The outdoor unit is provided with a condensate drip tray
- The draining condensation must be able to percolate away under the outdoor unit or be carried away via a condensate drain
- An optional condensate drip tray for collective discharge of the condensate is available

Electrical connections

- Outdoor unit on the right side 3 x 400 V
- Indoor unit rear left 3 x 400 V
- Emergency heating (3 x 400 volts) is connected externally separately (optional)

Outdoor unit

Indoor unit

Hoval Belaria® S	Heat output with A2W45	
35 °C 55 °C	Type	kW
B A ⁺	(11)	9.5
B A ⁺	(14)	11.8
B A ⁺	(16)	13.2

Energy efficiency class of the compound system with control

Performance data at max. output

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of ≤ 0.23.

Delivery

- Inside and outdoor unit delivered packaged separately
- Controller and both cut-off valves are included separately with the indoor unit
- Sensor for calorifier supplied loose in the indoor unit (cannot be shortened)

On site

- · Mounting accessories
- · Mounting of the controller (wall mounting)

Option

 Emergency heating 6 kW (3 x 400 V, see "Technical data") with safety thermostat, safety valve

Hoval Belaria® SHM air/water heat pump system

and outdoor unit.

Part No.

993 994 995

High-temperature heat pump system up to 80 °C flow temperature!

Delivery Inside and outdoor unit delivered packaged separately.

Split system comprising indoor unit

Belaria [®] SHM Type	Heat output A2W45 kW	
(11)	9.5	7015
(14)	11.8	7015
(16)	13.2	7015

Energy efficiency class see Description

Accessories

Interface module RTD-W for external output control ON/OFF, 0-10 V, MOD bus 2061 516

Room station (PCB2) incl. room sensor (cable connection - slave); additionally to operator terminal in the indoor unit (master: wall mounting in basement)

2037 734

Room thermostat with remote control

RS-W (cable connection) 6023 044

RS-R (with radio transmission) 6023 045

Notice

The request circuit board A8P must be ordered as well for these room thermostats.

Additional board (A4P/A7P) digital on/off board for:

- alarm output

- change-over to external heat source

2037 415

6033 522

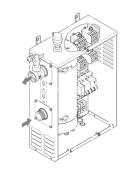
6033 374

6022 606

6040 216

6028 144

■ Part No.



Notice

Only use a condensate drip tray if it is absolutely necessary. If the condensation can flow away unobstructed, no condensate drip tray will be required.

Accessories Par

Demand board (A8P) for external power limitation 4 inputs Limitation of current (A) or power (kW) External control heating/cooling and On/Off

Condensate drip tray cpl. for outdoor unit

for Belaria® SHM (11-16) for collection of the condensate under the outdoor unit Material: UV-resistant plastic Tray heater 120 W, 230 V with thermostat with additional protection Condensate outlet: Ø (outside) 38 mm

Dimensions: 960 x 420 x 40 (LxWxD) For mounting on socket, the vibration dampers have to be ordered separately.

Trace heating tape for heating a condensate drainage pipe (on site) and a condensate drip tray KWD

with thermostat and microfuses Output: 40-80 W, 230 V Length: cable 1.5 m; heating tape 2 m

Electrical emergency heating

for external mounting on the wall incl. air vent valve, entry R 11/4" exit Rp 11/4" flow switch thermal protection, switching contactor Power: 6 kW, 3x400 V

Demand board (A8P) necessary.

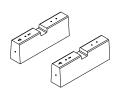
Protective roof for outdoor unit

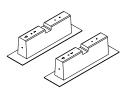
for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) Aluminium powder-coated Colour: silk grey RAL 7044 Can also be combined with wall bracket for outdoor unit.

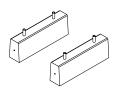
Protective grid for outdoor unit

for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) sturdy grid for protection of the evaporator Material: coated stainless steel (RAL 7044) Mounting on site

Protective grid for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) sturdy grid for protection of the evaporator (on the front) Material: coated stainless steel (RAL 7044)


Mounting on site





Accessories

Wall console for outdoor unit for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) for fastening the unit onto the wall 2 stainless steel clamps incl. vibration dampers and fastening material Caution: Not to be used in this form on insulated walls!

Not suitable for lightweight walls!

Stand bracket

for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16) for mounting the unit on the floor incl. vibration damper Dimensions (LxWxH): 300x660x400 Weight: 7.5 kg

Concete base set BSW01-FU

to securely erect an outdoor unit on solid ground. Consisting of: 2 concrete bases with molded fastening sleeves, screw set Weight: 2 pieces of 58 kg

Concrete base set BSW01-FD

to securely erect an outdoor unit on flat roof. Consisting of: 2 concrete bases with molded fastening sleeves, protective mats with aluminium facing, screw set Weight: 2 pieces of 58 kg

Concrete base set BSW01-ZS

to securely erect an outdoor unit in drainage bed for gardens and meadows. Additional base height 250 mm for plug combination with set BSW01-FU Consisting of: 2 additional concrete bases, screw set Weight: 2 pieces of 58 kg

Vibration damper

for Belaria® SRM (4-16), compact SRM (4-16) and SHM (11-16) for installing the unit on a concrete base (on site). 4 pieces incl. dowels HKD-S M8x30, washers and nuts

Part No.

6040 353

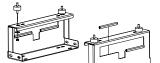
6040 355

6046 157

6046 158

6046 159

Part No.


Acoustic insulation housing SDG02 for Belaria® SRM (11-16), compact SRM (11-16) and SHM (11-16)

of the unit set up outdoors
Protects the unit against any
weather influences
Steel with aluminium zinc coating
Colour: grey (RAL 9006)

Dimensions (HxWxD): 1610x1200x900 Sound attenuation depending on installation and ambient conditions up to -6 dB(A)

Base set SDG02 must be ordered as accessory

6040 357

Base set SDG02

for sound attenuation housing SDG02 Overall height: 190 mm Consisting of: 2 U-shaped brackets, coated 4 vibration dampers Must be ordered as accessory for use with sound attenuation housing SDG02 6042 938

Condensate drip tray KWD - SD housing

acoustig insulation housing for Belaria® SRM (4-16), compact SRM (4-16) and SHM (11-16) for collection of the condensate under the outdoor unit in the acoustic insulation housing SDG01 and SDG02 With drain port for hose connection Without support heating strip

6040 344

Connection set AS32-2/ H

for compact mounting
of all required fittings
of a direct circuit
consisting of:
2 thermometer ball valves
Wall bracket included separately
Connection T-piece DN 32
in the return flow for connecting the
sludge separator CS 32 bottom and
the expansion tank on the side
on connection set
installation option
for an overflow valve
incl. non-return valve

Connection set AS32-2/ HW

for compact mounting of all required fittings of a direct circuit and hot water charging Consisting of: Fully assembled armature group with 2 thermometer ball valves Thermal insulation box made of EPP half-shells 3-way motor valve 2-LR230A included separately Connection T-piece DN 32 in the return flow for connecting the sludge separator CS 32 bottom and the expansion tank on the side on connection set installation option for an overflow valve incl. non-return valve

Part No.

6039 794

Bypass valve DN 32 (11/4")

for the installation in a HA group DN 32 Setting range 0.6-1.5 bar Max. flow rate: 1.5 m³/h with self-sealing screw connection for mounting between flow and return ball valve

6014 849

Overflow valves must close

completely under the set pressure.

Sludge separator CS 25-1" with magnet

for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %
Weight: 1.21 kg

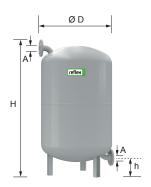
2063 735

Sludge separator CS 32-11/4" with magnet

for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 11/4"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %
Weight: 1.37 kg

2063 736

Strainer PN 16 B50-32-11/4"


Mesh size 0.5 mm

Casing brass, PN 16 Connections Rp 11/4" Operation temperature max.: 110 °C Sieve made of stainless steel

Part No.

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- · incl. seals and screw connections

DN	Conne	ection	kvs	ൎV [m³/h] at	
	Valve	Fitting		ΔP 50 mbar	
25	G 1½"	Rp 1"	13	2.91	6045 769
32	G 2"	Rp 11/4"	25	5.59	6045 770

Suitable motor drive

Туре	Voltage	Control signal	

GLB341.9E 230 V / 50/60 Hz 2-/3-point 150 s 2070 331

Circulation pumps, actuators, buffer storage tanks

see separate brochures

Reflex V40

Sheet steel intermediate tank, designed for operating pressures up to 10 bar.

Reflex	ØD	Н	h	Α
Type	mm	mm	mm	
V 40	409	562	113	R 1"

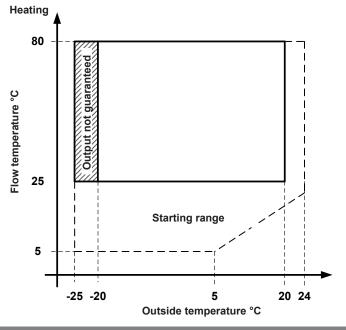
2057 249

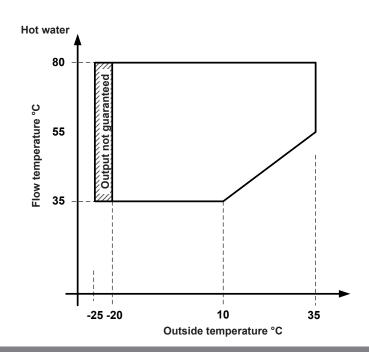
Services

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.


Hoval Belaria® SHM


Туре			SHM (11)	SHM (14)	SHM (16)
Seasonal coefficient of performance moderate c	limate 35 °C/55 °C	SCOP	2.7/3.0	2.8/3.0	2.9/3.0
Performance data according to EN 14511	iiiilate 33 0/33 0	3001	2.175.0	2.0/3.0	2.9/3.0
Heat output A2W45		kW ¹	9.5	11.8	13.2
 Power consumption A2W45 		kW ¹	3.3	4.4	5.1
Coefficient of performance - heating A2W45		COP	2.9	2.7	2.6
Weight inside/outdoor unit		kg		144/120	
CompressorRefrigerant filling R-410A/ R134a		kg	2 x spiral-(s	scroll), hermetic, spee 4.5/3.2	d-controlled
Fan type			2	x axial, speed-controll	ed
Evaporator Pipe series			lar	nellar tube Alu-coated 2	/Cu
Condenser			soldered sta	ainless steel plate hea	t exchanger
Capacity		litres		2,78	· ·
Tube connection		G		11/4"	
Nominal volume flow	$(\Delta t = 10K)$	m³/h	0.95	1.2	1.38
	$(\Delta t = 5K)$	m³/h	1.9	2.4	2.75
Min. volume flow		m³/h		0.69	
Max. operating pressure heating side		bar		3	
Operating limit values					
Heat source heating					
Min. outside air temperature		°C		-20	
Max. outside air temperature		°C		20	
 Range of application see diagram 					
Electrical data			indoor unit		outdoor unit
Power consumption					
Emergency heating (option)		kW	1-stage - 6.0		-
Voltage					
• Compressor		V	3 x 400		3 x 400
Emergency heating (option)		V	3 x 400		_ 50
Frequency Voltage range (400 V)		Hz V	50 380-415		380-415
Operating current max.		V	300-413		300-413
Compressor		Α	11.0		12.0
Starting current		A	5.8		5.8
• Fuse		Α	16T		16T

Using a residual current circuit breaker RCCB type B, $I\Delta n \ge 300$ mA is recommended. Country-specific regulations must be observed.

Diagram of area of application

Belaria® SHM

¹ kW = overall unit incl. defrosting loss (Δt 5K EN14511)

Hoval Belaria® SHM

Sound pressure level – sound power level ³

The sound pressure levels indicated below apply if the outdoor unit is placed at a building façade. These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

The **sound pressure level** is dependent on the **place of measurement** within a sound field and describes the sound intensity at this point. In contrast, the **sound power level** is a characteristic of the **sound source** and therefore does not change with distance; it describes the totality of sound power of the relevant source radiated in all directions.

Structure-borne sound

The bases and consoles for the outdoor unit must be erected/installed with vibration-damping against the structural shell.

Indoor unit

The effective sound pressure in the installation room depends on various factors such as room size, absorption capacity, reflection, free sound propagation etc. For this reason, it is important to ensure that where possible, the boiler room is outside noise-sensitive areas of the building and equipped with a sound-absorbing door.

Туре		SHM (11)	SHM (14)	SHM (16)
Outdoor unit				
 Sound power level in heating operation³ 	dB(A)	68	69	71
 Sound pressure level in heating operation at 5 m ^{1, 3} 	dB(A)	47	48	50
 Sound pressure level in heating operation at10 m ^{1,3} 	dB(A)	41	42	44
Indoor unit				
Sound power level	dB(A)	43	45	46
 Sound pressure level ² 1 m flow 65 °C/return 55 °C 	, ,			
- front side	dB(A)	40	43	45

¹ The sound pressure levels indicated apply if the outdoor unit is placed at a building façade.

These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

Pressure expansion tank

The indoor unit is equipped with an expansion tank (flat shape) with a volume of 12 I, pre-pressure 1 bar

Pre-pressure 1	bar	1.5	1.8	2.1
Capacity	1	3.0	2.4	0.85
Maximum possible system height Hp ²	m	12	15	18

¹ Pre-pressure = system height + 0.3 bar. The pre-pressure should be adjusted to the system height.

$$V_n = V_A x f x X$$
 (litres)

V_n = expansion volume (litres)

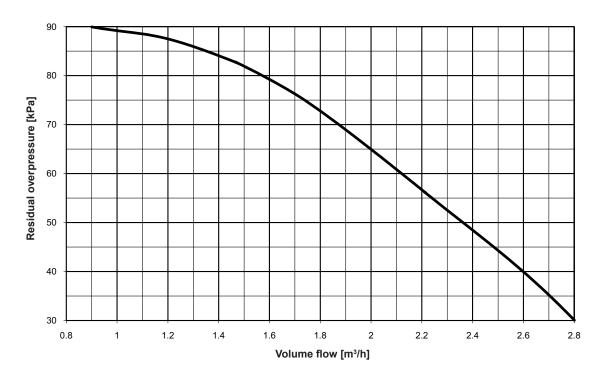
 V_A = system content at + 10 °C

f = thermal expansion factor (45°), f = 0.01

X = add-on factor acc. to SWKI 93-1, X = 3

	System	V_A	V_n
System content	5 kW	120 I	3.6 I expansion quantity
(underfloor heating system)	6 kW	140 I	4.2 I expansion quantity
	7 kW	160 I	4.8 I expansion quantity
	8 kW	180 I	5.4 I expansion quantity
	9 kW	200 I	6.0 I expansion quantity

If the capacity of the installed expansion tank is not sufficient, an additional tank must be installed outside the unit.

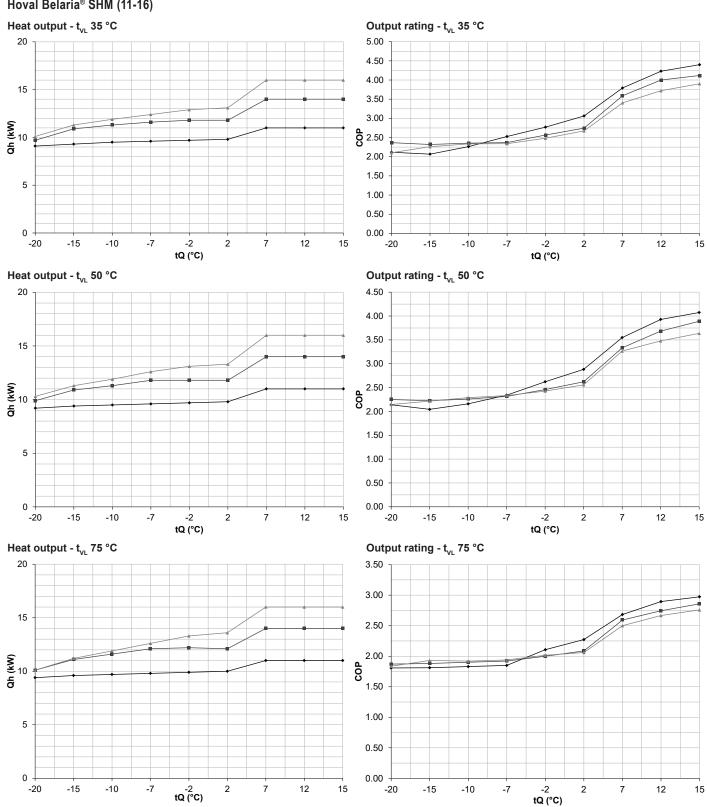

² The sound level of the indoor unit apply in whisper mode. The values increase by approx. +2 dB(A) at full load.

³ The sound values apply with a clean evaporator. These values can be temporarily exceeded before defrosting.

² System pressure Hp = hydrostatic pressure of the system, i.e. height from the centre of the tank to the highest air-bleeding point of the system

Pump characteristic curve Belaria® SHM (11-16)

externally available pressure



The minimum volume flow of 11.5 litres/min (0.69 m³/h) must always be provided.

Performance data - heating

Maximum heat output allowing for defrosting losses

Hoval Belaria® SHM (11-16)

Take account of daily power cuts!

tVL = heating flow temperature (°C) = source temperature (°C)

see Engineering

= heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Belaria® SHM (11)

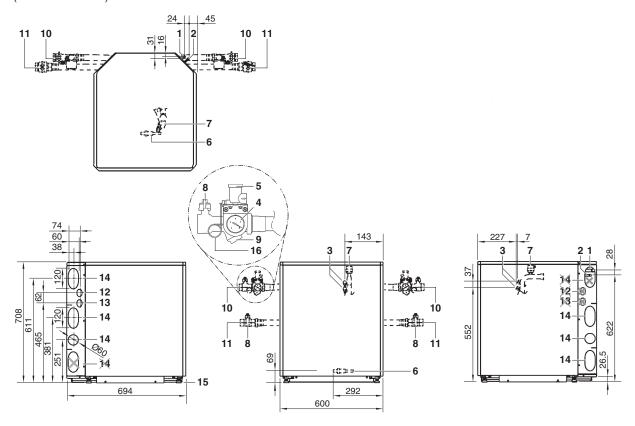
Belaria® SHM (14)

Belaria® SHM (16)

Performance data - heating

Hoval Belaria® SHM (11-16)

Type	icc. to EN14		SHM (11)			SHM (14)			SHM (16)	
ťŸL °C	tQ °C	Qh kW	P kW	COP	Qh kW	P kW	COP	Qh kW	P kW	COP
	-20	9.1	4.3	2.12	9.7	4.1	2.37	10.1	4.8	2.10
	-15	9.7	4.5	2.16	10.9	4.7	2.32	11.3	5.0	2.26
	-10	9.6	4.2	2.29	11.3	4.8	2.35	11.9	5.1	2.33
35	-7 -2	9.5 9.4	3.8 3.5	2.50 2.69	11.6 11.8	4.9 4.6	2.37 2.57	12.4 12.9	5.3 5.2	2.34 2.48
55	-2 2 7	9.4	3.2	2.94	11.8	4.3	2.74	13.1	4.9	2.67
	7	11.0	2.9	3.79	14.0	3.9	3.59	16.0	4.7	3.40
	12	11.0	2.6	4.23	14.0	3.5	4.00	16.0	4.3	3.72
	15 -20	11.0 9.2	2.5 4.3	4.40 2.14	14.0 9.8	3.4 4.2	4.12 2.33	16.0 10.2	4.1 4.8	3.90 2.13
	-15	9.7	4.5	2.16	10.9	4.8	2.27	11.3	5.0	2.26
	-10	9.6	4.2	2.29	11.3	4.8	2.35	11.9	5.2	2.29
40	- 7	9.5	3.9 3.5	2.44 2.71	11.7	4.9	2.39	12.5	5.3 5.2	2.36
40	-2 2	9.5 9.4	3.5	2.71	11.8 11.8	4.7 4.3	2.51 2.74	13.0 13.2	5.2	2.50 2.64
	2 7	11.0	3.0	3.67	14.0	4.0	3.50	16.0	4.7	3.40
	12	11.0	2.7	4.07	14.0	3.6	3.89	16.0	4.4	3.64
	15	11.0 9.2	2.5 4.3	4.40 2.14	14.0	3.5 4.3	4.00	16.0	4.2	3.81
	-20 -15	9.2	4.3 4.6	2.14	9.8 10.9	4.3 4.8	2.28 2.27	10.2 11.3	4.8 5.1	2.13 2.22
	-10	9.6	4.3	2.23	11.3	4.9	2.31	11.9	5.2	2.29
	-7	9.5	4.0	2.38	11.7	5.0	2.34	12.5	5.3	2.36
45	-2	9.5	3.6 3.3	2.64	11.8	4.7	2.51	13.0	5.3	2.45
	2 7	9.5 11.0	3.3 3.0	2.88 3.67	11.8 14.0	4.4 4.1	2.68 3.41	13.2 16.0	5.1 4.8	2.59 3.33
	12	11.0	2.8	3.93	14.0	3.7	3.78	16.0	4.5	3.56
	15	11.0	2.6	4.23	14.0	3.6	3.89	16.0	4.3	3.72
	-20 -15	9.2 9.7	4.3 4.6	2.14 2.11	9.9 10.9	4.4 4.9	2.25 2.22	10.3 11.3	4.8 5.1	2.15 2.22
	-10	9.7	4.4	2.20	11.3	5.0	2.26	11.9	5.2	2.29
	-7	9.6	4.1	2.34	11.8	5.1	2.31	12.6	5.4	2.33
50	-2	9.5	3.7	2.57	11.8	4.8	2.46	13.1	5.4	2.43
	2 7	9.5 11.0	3.4 3.1	2.79 3.55	11.8 14.0	4.5 4.2	2.62 3.33	13.3 16.0	5.2 4.9	2.56 3.27
	12	11.0	2.8	3.93	14.0	3.8	3.68	16.0	4.6	3.48
	15	11.0	2.7	4.07	14.0	3.6	3.89	16.0	4.4	3.64
	-20 -15	9.2 9.8	4.3 4.7	2.14 2.09	9.9 10.9	4.6 4.9	2.15 2.22	10.3 11.3	4.8 5.1	2.15 2.22
	-10 -10	9.6	4.4	2.09	11.4	5.0	2.28	12.0	5.3	2.26
	-7	9.6	4.2	2.29	11.8	5.1	2.31	12.6	5.4	2.33
55	-2 2	9.5	3.7	2.57	11.8	4.9	2.41	13.1	5.4	2.43
	7	9.5 11.0	3.5 3.2	2.71 3.44	11.8 14.0	4.6 4.2	2.57 3.33	13.3 16.0	5.3 5.0	2.51 3.20
	12	11.0	2.9	3.79	14.0	3.9	3.59	16.0	4.7	3.40
	15	11.0	2.8	3.93	14.0	3.7	3.78	16.0	4.5	3.56
	-20 -15	9.3 9.8	4.7 5.1	1.98 1.92	10.0 11.0	4.9 5.2	2.04 2.12	10.4 11.4	5.1 5.4	2.04 2.11
	-15 -10	9.8	4.9	2.00	11.5	5.2 5.4	2.12	12.1	5.4 5.7	2.11
	-7	9.7	4.7	2.06	11.9	5.5	2.16	12.7	5.9	2.15
65	-2	9.6	4.2	2.29	12.0	5.3	2.26	13.3	5.9	2.25
	-2 2 7	9.6 11.0	3.9 3.6	2.46 3.06	11.9 14.0	5.0 4.7	2.38 2.98	13.5 16.0	5.8 5.6	2.33 2.86
	12	11.0	3.3	3.33	14.0	4.3	3.26	16.0	5.2	3.08
	15	11.0	3.2	3.44	14.0	4.2	3.33	16.0	5.0	3.20
	-20	9.4	5.2	1.81	10.1	5.4	1.87	10.1	5.5	1.84
	-15 -10	10.0 9.9	5.7 5.5	1.75 1.80	11.1 11.6	5.9 6.1	1.88 1.90	11.2 11.9	5.8 6.2	1.93 1.92
	-7	9.9	5.3	1.87	12.1	6.3	1.92	12.6	6.5	1.94
75	-2	9.8	4.7	2.09	12.2	6.1	2.00	13.3	6.6	2.02
	-2 2 7	9.8 11.0	4.4 4.1	2.23 2.68	12.1 14.0	5.8 5.4	2.09 2.59	13.6 16.0	6.6 6.4	2.06 2.50
	12	11.0	3.8	2.89	14.0	5.4	2.39	16.0	6.0	2.67
	15	11.0	3.7	2.97	14.0	4.9	2.86	16.0	5.8	2.76
	-20	9.4	5.5	1.71	10.1	5.8	1.74	10.0	5.7	1.75
	-15 -10	10.0 10.0	6.1 5.9	1.64 1.69	11.1 11.6	6.2 6.5	1.79 1.78	11.1 11.9	6.1 6.4	1.82 1.86
	-10 -7	9.9	5.7	1.74	12.1	6.7	1.76	12.6	6.8	1.85
80	-2	9.8	5.1	1.92	12.2	6.5	1.88	13.3	7.0	1.90
	2 7	9.8	4.8	2.04	12.1	6.2	1.95	13.6	7.0	1.94
	/ 12	11.0 11.0	4.4 4.1	2.50 2.68	14.0 14.0	5.7 5.5	2.46 2.55	16.0 16.0	6.7 6.4	2.39 2.50
	15	11.0	4.0	2.75	14.0	5.3	2.64	16.0	6.2	2.58

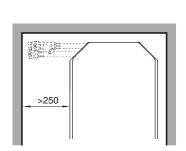

tVL = heating flow temperature (°C)
tQ = source temperature (°C)
Qh = heat output at full load (kW), measured in accordance with standard EN 14511
P = power consumption of the overall unit (kW)
COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

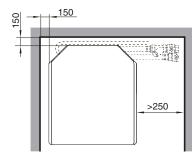
Take account of daily power cuts! see Engineering

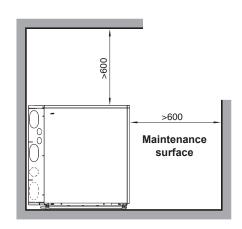
■ Dimensions

Hoval Belaria® SHM (11-16) indoor unit

(Dimensions in mm)

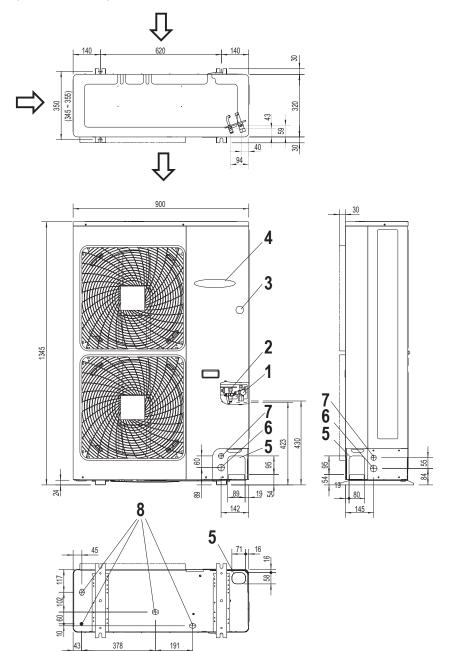


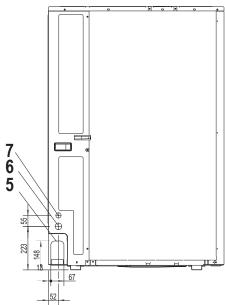

Electric cables can only be fed in on the rear left side!


- 1 Hot gas line R410A 5/8" (15.9 mm)
- 2 Liquid line R410A 3/8" (9.5 mm)
- 3 Maintenance connections R410A Ø 12.7 mm
- 4 Pressure gauge
- 5 Safety valve

- 6 Drain for water circuit
- 7 Air bleeding
- 8 Shut-off valve
- 9 Water filter
- 10 Heating return G 1"
- 11 Heatin flow G 1"
- 2 Feed-through for control cable (opening Ø 37 mm)
- 13 Feed-through for power supply (opening Ø 37 mm)
- 14 Feed-through for refrigerant line and flow/return
- 15 Levelling feet

Space requirement for Hoval Belaria® SHM indoor unit (Dimensions in mm)

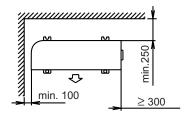


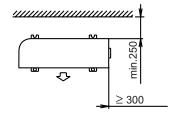


■ Dimensions

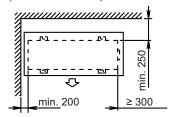
Hoval Belaria® SHM (11-16) outdoor unit

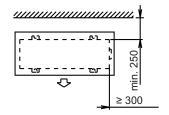
(Dimensions in mm)

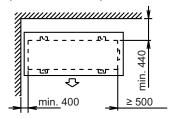


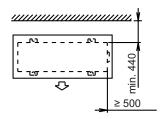

- 1 Hot gas connection
- 2 Liquid connection
- 3 Maintenance aperture (under the cover)4 Electrical connection (in the control box)
- Inlet opening for refrigerant lines
- Feed-through for power supply Feed-through, control connection cable
- 8 Condensate outlet

■ Dimensions


Space requirement


Space requirement for Hoval Belaria® SHM (11-16) outdoor unit without roof (Dimensions in mm)




Space requirement for Hoval Belaria® SHM (11-16) outdoor unit with roof (Dimensions in mm)

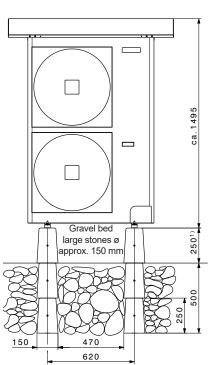
Space requirement for Hoval Belaria® SHM (11-16) with acoustic insulation housing (Dimensions in mm)

There must be adequate space for the outlet (approx. 1 m) to route off the cooled air.

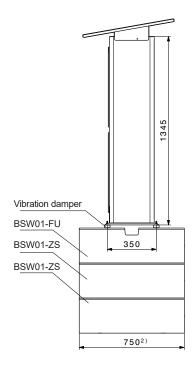
The outdoor unit must be protected against heavy snowfall. If necessary, provide a cover.

The outdoor unit must be placed on feet at least 250 mm / 50 mm high. There must be a gravel bed under it to discharge the condensation. (see base plans)

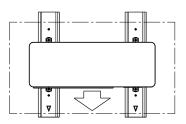
Dimensions of protective roof for outdoor unit


Belaria [®] SHM type	В	Т
(11-16)	1180	660

Base plans for Hoval Belaria® SHM (11-16)

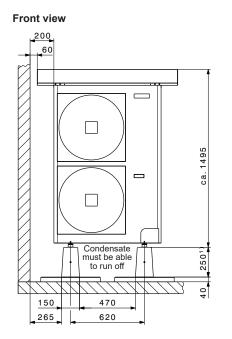

(Dimensions in mm)

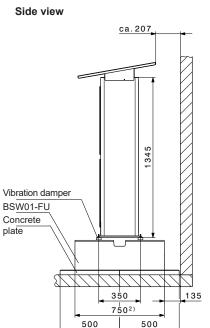
Concrete base - gravel bed


Front view

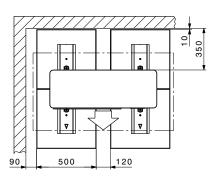
Side view

View from above


- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950

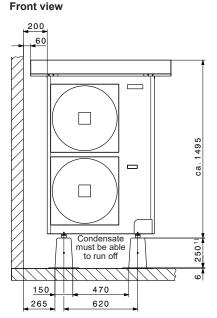

Dimensions

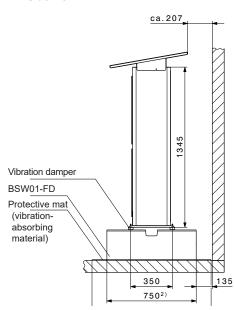
Base plans for für Belaria® SHM (11-16)


(Dimensions in mm)

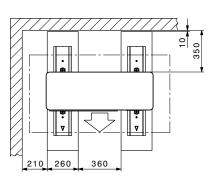
Concrete base - firm base

View from above




- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950
- The outdoor unit must be attached to the base using 4 vibration dampers M8 and concrete dowels (see Accessories).

Side view


· If the outdoor unit is exposed to strong winds, the bases must be extended to approx. 700 mm and anchoring cables fitted.

Concrete base - flat roof

View from above

- Depending on the possible snow depth; for version with sound attenuation housing >50-70 base height 200 mm (included in the scope of delivery)
- Design with sound attenuation housing min. length 950
- Prevention of the transmission of structure-borne sound to the roof is very important.
 Specialists may need to be consulted, depending on the specific roof design.
- The outdoor unit must not be installed directly above bedrooms!
- · The outdoor unit must be attached to the base using 4 vibration dampers M8 and concrete dowels (see Accessories).
- The outdoor unit must be protected against heavy snowfall. If necessary, provide a cover (see Accessories).
- The condensate must be routed away from the base so that no ice can form on the base.
- · Observe the maximum permissible roof load without fail! (weight of unit, concrete base and any snow load).
- If the outdoor unit is exposed to strong winds, the bases must be extended to approx. 700 mm and anchoring cables fitted.
 In addition, wind deflectors must be installed.

Engineering

Requirements and directives

The general requirements and directives listed in the Chapter Engineering apply.

Installation

General comments

- The distance between the inside and outdoor unit must be as short as possible. Only short and simple routing of refrigerant lines guarantees cost effectiveness.
- The required minimum length for the lines between the outside and indoor unit is 3 m, and the lines must not be shorter than this. The maximum permissible length of the lines between the outside and indoor unit is 30 m and must not be exceeded. The maximum permissible height difference between outside and indoor unit is 30 m. The maximum permissible length of the lines between calorifier and indoor unit is 10 m. It is essential to clarify details of the installation location and line routing with Hoval!

Indoor unit

- The indoor unit of the Hoval Belaria® SHM air/water heat pump system can be mounted on the floor in the boiler room.
- The installation location must be selected in accordance with the valid requirements and directives
- The installation must be free from dust or other foreign matter which could lead to contamination.
- Where possible, the installation location should be outside noise-sensitive areas of the building and equipped with a soundabsorbing door.
- Access for the purpose of operation and maintenance must be ensured.
- · The installation location must be frost-free.
- The space around the indoor unit allows for adequate air circulation.
- Precautions are taken in case water is drained via the safety valve.
- The indoor unit is not designed to be allowed to be installed where there could be a potentially explosive atmosphere.
- Do not install the indoor unit in a room that will also be used as a workplace or workshop. If construction work is taking place in the vicinity (e.g. sanding work) which gives rise to a lot of dust, the unit must be switched off and covered.
- If the noise level is measured under the actual installation conditions, this will be higher than specified in the unit specification. This is because of reflected noise from the surroundings. Select the installation location accordingly.
- Take precautions so that no damage can be caused by leaking water if there is a leak at the installation location and in the vicinity.
- The floor must withstand the weight of the indoor unit. It must be level so that no vibration and noise is created and the unit stands securely.

- · Do not place objects on the unit.
- · Do not climb onto, sit on or stand on the unit.
- Make sure that adequate precautions are or will be taken according to the particular local and national regulations in the event that there is a leak in the refrigerant circuit.
- Rooms with high air humidity, for example laundry rooms, are not suitable installation locations (dewpoint <10 °C).

The installation of a magnetic sludge separator is mandatory.

Outdoor unit

The outdoor unit is installed outdoors. The installation location must be selected carefully. It is essential that the following ancillary conditions are met:

- The subsoil in the installation location must be sufficiently stable to bear the weight of the unit and its vibration in operation.
- The location should have adequate space for installation, maintenance and cleaning of the unit (see dimensions "Space requirements").
- As condensate flows out of the outdoor unit, a gravel bed to absorb the condensate must be installed under it. Do not place anything which is sensitive to moisture under the unit.
- Due to the sound emissions, the installation location should not be beneath living-room or bedroom windows and be far enough away from neighbouring buildings (perform calculation).
- The selected location should be such that the air blown out by the unit does not bother occupants of the building or neighbours.
- No parts and plants at risk of frost damage are allowed to be on the blow-out side.
- It is essential to avoid air short-circuiting.
 The space necessary for intake and outlet must always be provided (see space requirements).
- The installation location must be selected so that the air intake and outlet are not blocked or obstructed by snow, leaves, etc.
- Installation in wall niches is not recommended (air short circuit, sound echo).
- The units cannot be installed one above the other.
- Install the units, the mains cables and the branch wiring at least 3 m away from TV sets and radios. This should prevent interference with picture and sound.
- The intake air must be completely free of aggressive substances such as ammonia, sulphur, chlorine etc.
- Installation on a wall console is not suitable in the case of lightweight walls. Lightweight walls can increase sound emissions and transmit structure-borne sound.
- Install the outdoor unit so that the intake side faces the wall and is not directly exposed to the wind.

- Never install the outdoor unit in a place where the intake side is directly exposed to the wind
- Fit a deflector plate on the air outlet side of the outdoor unit to prevent exposure to the wind
- The outdoor unit must be protected against heavy snowfall.
- Install the unit at sufficient height from the ground to ensure that the unit is not covered by snow and freezing condensate cannot impair operation (see separate base plans).

Condensate (outdoor unit)

- · Condensate must be able to run off freely.
- Use a condensate drip tray if the condensate has to be drained off collectively (option).
- It is essential to insulate the condensate hose from the tray, and if necessary, equip the hose with trace heating.

Refrigerant connecting lines

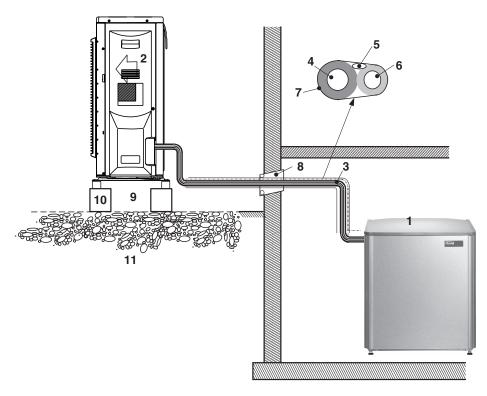
- The refrigerant connecting lines may only be installed by authorised persons and following consultation or approval by Hoval.
- The line dimensions must be precisely adhered to (see also Section "Part No."; refrigerant connecting lines).
- The inside and outdoor unit, with the hot gas and liquid line, must be fitted professionally with thermal insulation.

Wall lead-through, protective pipe for routing of the lines

The wall lead-through and the protective pipe (Ø min. 100 mm) for the connecting lines must be routed with no changes of direction, executed professionally and sealed.

Electric connecting cables

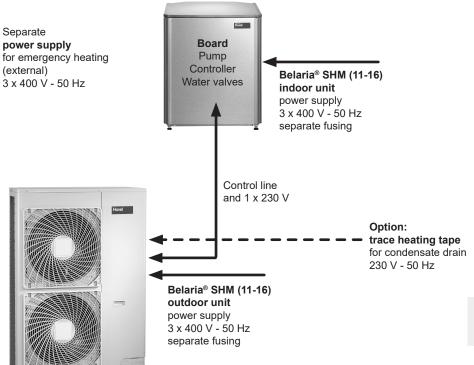
- The electric connecting cables on the outdoor unit must be connected flexibly.
- Taking advantage of the special reduced tariffs offered by local energy companies for heat pump systems often means interrupted operation. For example, within any 24-hour period, the power supply may be interrupted for 3 periods of 2 hours each. This must be taken into account when dimensioning and planning the heat pump.


Necessity of an oil separator

If the outdoor unit is placed lower than the indoor unit, an oil separator must be bent or installed in the hot gas line for each 10 m of height difference (siphon). The oil separator prevents the compressor oil flowing back after switching off and thus slugging which could damage the compressor.

■ Engineering

Cross-section of connecting line

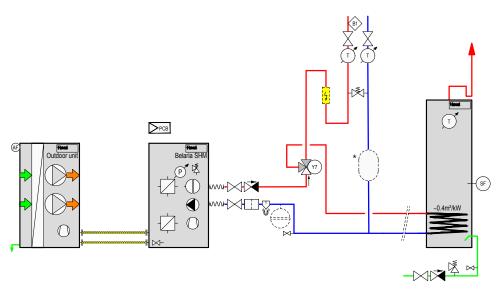


- 1 Indoor unit (evaporator / compressor / condenser)
- 2 Outdoor unit (evaporator / fan / compressor)
- 3 Refrigerant connecting line
- 4 Hot gas line with thermal insulation
- 5 Electric connecting cable (on site)
 Belaria® SHM (11-16)
 1 cable (control connection cable)
- 6 Refrigerant liquid line with thermal insulation
- 7 Wrapping or duct
- 8 PE casing tube Ø at least 100 mm with sealing (on site). All casing tubes for the lines must be routed straight (it must be possible to look down the tube and see the other end!).
- 9 Condensate
- Base or paving slab to be provided on site on gravel (The height is to be determined depending on the climate zone, recommended height >250 mm; consider max. possible local snow height)
- 11 Drainage (on site)

Line length between outdoor unit and indoor unit Hoval Belaria® SHM type (11-16) • Minimum line length 5 m • Maximum permissible length 50 m

Maximum permissible height difference 30 m

Electrical connection Hoval Belaria® SHM


The trace heating tape must be connected according to the local regulations, e.g. separate protection by a ground fault circuit interrupter.

■ Examples

Belaria® SHM (11-16) Air/water heat pump with

- calorifier
- 1 direct circuit

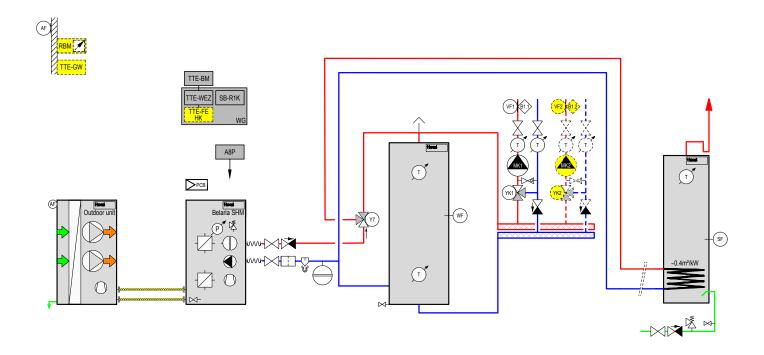
Hydraulic schematic BBACE020

* Additional volume for defrosting process

Important notices

- Direct circuit not suitable for low-temperature heating systems
- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

PCB Room station Outdoor sensor SF Calorifier sensor Switching valve


■ Examples

Belaria® SHM (11-16)

Air/water heat pump with

- energy buffer storage tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematic BBACE040

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

TopTronic® E control module TTE-BM

TopTronic® E basic module heat generator (in the wall housing) TTE-WEZ

SB-R1K System module relais 1 contact

WG Wall housing A8P Additional board **PCB** Room station

VF1 Flow temperature sensor 1 B1.1 Flow temperature guard (if required)

MK1 Pump mixer circuit 1 YK1 AF Actuator mixer 1 Outdoor sensor SF Y7 Calorifier sensor

Option

TopTronic® E room control module TopTronic® E Gateway RBM

Switching valve

TTE-GW

TopTronic® E module expansion heating circuit TTE-FE HK

VF2 Flow temperature sensor 2

B1.2 Flow temperature guard (if required)

MK2 Pump mixer circuit 2 YK2 Actuator mixer 2

Hova

UltraSource B comfort C (8,17)

Description

Hoval UltraSource B comfort C Hoval UltraSource B compact C Modulating heat pump system for heating and cooling in the living area. UltraSource B compact C (8/200), (11/200) version additionally with domestic hot water storage tank.

Split system comprising indoor unit and outdoor unit.

Indoor unit UltraSource B comfort C

- · Compact floor-mounted air/water heat pump
- · UltraSource B comfort C (8) with rotary compressor controlled by inverter UltraSource B comfort C (11,17) with scroll capsule compressor controlled by inverter
- Casing made from painted, galvanised sheet steel. Colour flame red/brown red (RAL 3000/RAL 3011)
- Plate-type condenser made of stainless steel/CU
- Integrated components:
 - Speed-regulated high-efficiency pump
- Flow sensor/flow meter or heat meter
- E-heating element 1 to 6 kW
- 3-way changeover ball cock for heating/ domestic hot water (see accessories for domestic hot water set)
- · With cooling function with corresponding hydraulics
- Safety set consisting of safety valve, automatic air vent and pressure gauge (see accessories)
- Diaphragm pressure expansion tanks see "Various system components"
- Sensor set consisting of outdoor sensor, flow sensor and domestic hot water sensor included in the scope of delivery
- TopTronic® E controller installed
- Hydraulic connections
 - Heating connections 1" left or right side. See accessories for connecting hoses
- Working medium lines can be connected at rear
- · Electrical connections at rear

Indoor unit UltraSource B compact C

- Compact floor-mounted air/water heat pump
- UltraSource B compact C (8/200) with rotary compressor controlled by inverter UltraSource B comfort C (11/200) with scroll capsule compressor controlled by inverter
- Casing made from painted, galvanised sheet steel. Colour flame red/brown red (RAL 3000/RAL 3011)
- · Plate-type condenser made of stainless steel/CU
- Integrated calorifier 200 litres (can be divided for easier transport into the building; weight 1294 x 770 x 602)
- Enamel painted calorifier with PU hard-foam insulation energy efficiency class A, load profile XL. Maintenance flange and magnesium protection anode built in
- Integrated components:
 - Speed-regulated high-efficiency pump
- Flow sensor/flow meter or heat meter
- E-heating element 1 to 6 kW
- · With cooling function with corresponding hydraulics
- Safety set consisting of safety valve, automatic air vent and pressure gauge (see accessories)

Heat output 1)

UltraSource B compact C (8/200) available starting July 2019

Cooling capacity 1)

Outdoor unit (8,11)

Outdoor unit (17)

Indoor unit UltraSource B comfort C (8-17) UltraSource B compact C (8,11/200)

Hoval UltraSource B comfort C Hoval UltraSource B compact C

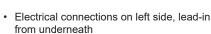
IIO Vai C	ill accurace D coi	iipaci o	i icai o	utput	Cooling capacity
		Type	A-7W35	A2W35	A35W18
35 °C	55 °C		kW	kW	kW
	A**	(8)	2.0-6.0	2.1-7.6	2.9-8.9
	A ⁺⁺ A	(8/200)	2.0-6.0	2.1-7.6	2.9-8.9
A***	A**	(11)	2.8-10.0	2.8-10.2	3.5-11.0
A***	A** A	(11/200)	2.8-10.0	2.8-10.2	3.5-11.0
A***	A***	(17)	6.0-14.8	6.0-17.4	6.2-17.7

Energy efficiency class of the compound system with control

1) Modulation range

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of ≤ 0.23.

Seal of approval FWS


The UltraSource B series is certified by the CH certification commission.

- Sensor set consisting of outdoor sensor, flow sensor and domestic hot water sensor included in the scope of delivery
- TopTronic® E controller installed
- Internally decoupled against solid-borne noise and can be connected directly
- Hydraulic connections
- Heating connections 1" top
- Hot and cold water connections 3/4" top
- Working medium lines can be connected at right or left side
- · Electrical connections at top

Outdoor unit

- Elegant and extremely quiet outdoor unit
- Compact unit for outdoor installation
- Housing with sheet metal enclosure, powder-coated, anthracite colour (DB703)
- U-shaped louvre-type evaporator
- Speed-controlled axial fan with FlowGrid
- Condensate tray incl. tray heating for channelling all the condensate in the outdoor unit, fixed installation, connection 1" accessible from below
- Working medium line connections can be connected underneath
- Suction gas line 16 mm
- Liquid line 12 mm

- 230 V control current, supplied from the indoor unit
- Data cable bus connection to the indoor unit

TopTronic® E controller

≈ehpa

Control panel

- 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- Simple, intuitive operating concept
- Display of the most important operating states
- Configurable start screen
- Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- Weather display (with HovalConnect option)
- Adaptation of the heating strategy based on the weather forecast (with HovalConnect option)

Hoval UltraSource B comfort C (8-17) Hoval UltraSource B compact C (8/200), (11/200)

Air/water heat pump

Hoval

Description

TopTronic® E basic module heat generator (TTE-WEZ)

- · Integrated control functions for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 DHW charging circuit
 - Bivalent and cascade management
- · Outdoor sensor
- · Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- Rast5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 - 1 module expansion:
 - Module expansion heating circuit or
 - Universal module expansion or
 - Heat balancing module expansion
- Can be networked with up to 16 controller modules in total:
 - Heating circuit/DHW module
 - Solar module
 - Buffer module
 - Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls"

Delivery

- · Indoor and outdoor unit delivered
- packaged separately
- · Sensor set in the indoor unit supplied loose

On site

- Masonry penetrations for working medium connection line
- · Electrical connecting line outdoor/indoor unit

Air/water heat pump Hoval UltraSource B comfort C Hoval UltraSource B compact C

Part No.

Modulating air/water heat pump for heating and cooling.

Comprising indoor unit and outdoor unit.

UltraSource B compact C with integrated calorifier in the indoor unit.

UltraSource B comfort C (8,17) UltraSource B compact C (8/200) available starting July 2019

With built-in Hoval TopTronic® E control

Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- Can be optionally expanded with max.
 1 module expansion:
 - Module expansion heating circuit or
 - Module expansion heat balancing or
 - Module expansion universal
- Can be optionally networked with up to 16 controller modules in total (incl. solar module)

Delivery

- Indoor and outdoor unit delivered packaged separately
- · Sensor set in the indoor unit supplied loose

Outdoor unit (8,11)

Outdoor unit (17)

Hoval UltraSource B comfort C

Type	Heat o	utput 1)	Cooling capacity 1)
	A-7W35	A2W35	A35W18
	kW	kW	kW
(8)	2.0-6.0	2.1-7.6	2.9-8.9
(11)	2.8-10.0	2.8-10.2	3.5-11.0
(17)	6.0-14.8	6.0-17.4	6.2-17.7

¹⁾ Modulation range

Hose set

for UltraSource B comfort (8-17)
Consisting of:
flexible connection hoses for
heating side insulated 1"
L = 1.0 m, can be shortened on one side

6046 173

7016 660 7016 663

7016 659 7016 662

7016 665

Hovel

No hose set necessary

Energy efficiency class see "Description"

Hoval UltraSource B compact C with integrated 200 litre calorifier.

Туре	Heat o	utput 1)	Cooling capacity 1)
	A-7W35	A2W35	A35W18
	kW	kW	kW
(8/200)	2.0-6.0	2.1-7.6	2.9-8.9
(11/200)	2.8-10.0	2.8-10.2	3.5-11.0

¹⁾ Modulation range

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:


- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer

incl. assembly material 1x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:

- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer each incl. energy balancing

incl. assembly material 3x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. assembly material

Can be installed in: Boiler control, wall housing, control panel

Further information see "Controls" section - "Hoval TopTronic® E module expansions" chapter

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

Part No.

6034 576

6037 062

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 for controller modules and module expansion 6034 503 TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TopTronic® E buffer module TTE-PS 6037 057 TTE-MWA TopTronic® E measuring module 6034 574 TopTronic® E room control modules TTE-RBM TopTronic® E room control modules 6037 071 easy white comfort white 6037 069 comfort black 6037 070 Enhanced language package TopTronic® E 6039 253 one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 6049 495 HovalConnect commercial starter LAN HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 HovalConnect domestic starter Modbus 6049 501 HovalConnect domestic starter KNX 6049 593 HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing WG-190 Wall casing small 6035 563 WG-360 Wall casing medium 6035 564 WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 6035 566 Wall casing large WG-510 BM Wall casing large with 6038 533 control module cut-out TopTronic® E sensors AF/2P/K Outdoor sensor 2055 889 TF/2P/5/6T Immersion sensor, L = 5.0 m 2055 888 ALF/2P/4/T 2056 775 Contact sensor, L = 4.0 m TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing System housing 182 mm 6038 551 System housing 254 mm 6038 552 Bivalent switch 2061 826

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Heating/cooling accessories

Part No.

Pressure expansion tanks

see "Various system components"

Safety set SG15-1"

Suitable up to max. 50 kW complete with safety valve (3 bar) Pressure gauge and automatic air vent with cut off valve

Connection: 1" internal thread

641 184

Connection set AS32-2/ H

for compact mounting
of all required fittings
of a direct circuit
consisting of:
2 thermometer ball valves
Wall bracket included separately
Connection T-piece DN 32
in the return flow for connecting the
sludge separator CS 32 bottom and
the expansion tank on the side
on connection set
installation option
for an overflow valve
incl. non-return valve

6039 793

Bypass valve DN 32 (11/4")

for the installation in a HA group DN 32 Setting range 0.6-1.5 bar Max. flow rate: 1.5 m³/h with self-sealing screw connection for mounting between flow and return ball valve

6014 849

Strainers

see "Various system components"

Sludge separator CS 25-1" with magnet

for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection Any inst. orientation -360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar
Glycol proportion max.: 50 %

Weight: 1.21 kg

Sludge separator CS 32-1¼" with magnet for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1¼"
Drain made of brass: hose connection Any inst. orientation -360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %
Weight: 1.37 kg

Strainer PN 16 B50-25-1"
Casing brass, PN 16
Connections Rp 1"
Operating temperature max.: 110 °C
Sieve made of stainless steel
Mesh size 0.5 mm

Strainer PN 16 B50-32-11/4"
Casing brass, PN 16
Connections Rp 11/4"
Operation temperature max.: 110 °C
Sieve made of stainless steel
Mesh size 0.5 mm

Dew point switch FAS mechanical dew point switch for monitoring the formation of condensation using adjustable switching value

Domestic hot water accessories

Warm water set
for UltraSource B comfort C,
UltraSource T comfort
Consisting of:
Motor drive for installed
changeover valve
Includes distance wave and flexible
connection hose insulated 1"
L = 1.0 m

Titanium impressed current anode for UltraSource B compact C, UltraSource T compact as cathodic protection for enamelled calorifier

In every case, either a Correx electrical anode or a magnesium anode may be used.

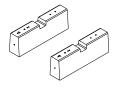
Screw-in electric immersion heater for plants with buffer storage tank as emergency heating.

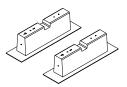
Туре	Heat output [kW]	Install. length [mm]	
EP 2.5	2.35	390	
EP 3.5	3.6	500	
EP 5	4.9	620	
EP 7.5	7.5	850	

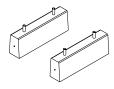
Part No.

2063 736

2046	978


2046 980


2070 911


6046 181

6046 662

Outdoor unit accessories	Part No.	
Concete base set BSW01-FU to securely erect an outdoor unit on solid ground. Consisting of: 2 concrete bases with molded fastening sleeves, screw set Weight: 2 pieces of 58 kg	6046 157	
Also order M10 vibration damper set		
Concrete base set BSW01-FD to securely erect an outdoor unit on flat roof. Consisting of: 2 concrete bases with molded fastening sleeves, protective mats with aluminium facing, screw set Weight: 2 pieces of 58 kg	6046 158	
Also order M10 vibration damper set		
Concrete base set BSW01-ZS to securely erect an	6046 159	

a concrete base.

Hoval UltraSource B comfort C (11) Hoval UltraSource B compact C (11/200)

Туре		(8)	(11)	(17)	(8/200)	(11/200)
 Energy efficiency class of the compound system with control Energy efficiency class load profile XL Seasonal coefficient of performance moderate climate 35 °C/55 °C 	35 °C / 55 °C	A+++/A++	A+++/A++	A+++/A+++	A+++/A++	A+++/A++
	Hot water	-	-	-	A	A
	SCOP	5.1/3.7	4.5/3.4	5.2/3.9	5.1/3.7	4.5/3.4
Performance data (heating) in acc. with EN 14511 Heat output A2W35 Power consumption A2W35 Coefficient of performance A2W35	kW	3.9	5.9	11.3	3.9	5.9
	kW	0.9	1.3	2.5	0.9	1.3
	COP	4.4	4.4	4.5	4.4	4.4
Heat output A7W35Power consumption A7W35Coefficient of performance A7W35	kW	4.5	6.8	12.8	4.5	6.8
	kW	0.9	1.3	2.5	0.9	1.3
	COP	5.2	5.1	5.1	5.2	5.1
 Heat output A-7W35 Power consumption A-7W35 Coefficient of performance A-7W35 	kW	3	4.4	8.7	3	4.4
	kW	0.9	1.3	2.6	0.9	1.3
	COP	3.4	3.3	3.3	3.4	3.3
Performance data (cooling) in acc. with EN 14511 Cooling capacity A35W18 Power consumption A35W18 Coefficient of performance A35W18 Cooling capacity A35W7	kW kW EER kW	5 1 4.8	7.8 1.8 4.3	12 2.7 4.4 8.5	5 1 4.8	7.8 1.8 4.3
Power consumption A35W7Coefficient of performance A35W7	kW	1	1.7	2.5	1	1.7
	EER	3.7	3.1	3.4	3.7	3.1
 Sound data Sound power level EN 12102 outdoor unit ^{5) 6)} Sound pressure level 5 m ^{4) 5)} Sound pressure level 10 m ^{4) 5)} Sound power level EN 12102 indoor unit 	dB (A)	46	49.8	57	46	49.8
	dB (A)	27	30.8	38	27	30.8
	dB (A)	21	24.8	32	21	24.8
	dB (A)	42	45.3	45	42	45.3
 Hydraulic data Max. flow temperature (without/with screw-in electrical heating inset) Max. flow heating water with A7/W35, 5K ΔΤ Nominal flow rate heating water 5K ΔΤ Residual overpressure of heating pump (at max. pump speed) Max. operating pressure on the heating side Max. operating pressure process water side Flow/return connection heating Cold/hot water connection Nominal air volume outdoor unit (A7W35 and nominal rotation speed) 	°C	62/65	63/65	62/65	62/65	63/65
	m³/h	1,5	2,2	3,7	1,5	2,2
	m³/h	0.8	1.2	2.2	0.8	1.2
	kPa	65	57	37	65	57
	bar	3	3	3	3	3
	bar	-	-	-	10	10
	R	1"	1"	1"	1"	1"
	R	-	-	-	3/4"	3/4"
	m³/h	2500	3600	5000	2500	3600
Cooling technical data Refrigerant Compressor/stages Refrigerant fill volume Compressor oil fill volume Refrigerant line connections suction gas side Refrigerant line connections liquid side Max. cable length Max. difference in height 3)	kg I mm mm m	R410A Inverter/1 3.2 4 0.35/FV50S 12 x 1 10 x 1 20 10	R410A Inverter/1 I.1 (up to 6 m) 0.99/FV50S 16 x 1 12 x 1 20 10		3.2	R410A Inverter/1 4.1 (up to 6 m) 0.99/FV50S 16 x 1 12 x 1 20 10
Electrical data Electrical connection compressor Electrical connection electric immersion heater Control electrical connection Max. compressor operating current Max. fan operating current Max. fan power consumption Max. electric immersion heater operating current Output factor Main current fuse Control current fuse Fuse electric immersion heater	V / Hz V / Hz V / Hz A A W A	1~230/50 1~230/50 3~400/50 1~230/50 15.8 0.21 48 13 0.94 16 13	3~400/50 3~400/50 1~230/50 9 0.5 113 13 0.97 13 13	3~400/50 3~400/50 1~230/50 14.8 0.5 113 13 0.95 16 13	1~230/50 3~400/50	3~400/50 3~400/50 1~230/50 9 0.5 113 13 0.97 13 13

Using a residual current circuit breaker RCCB type B, $I\Delta n \ge 300$ mA is recommended. Country-specific regulations must be observed.

Туре		(8)	(11)	(17)	(8/200)	(11/200)
Dimensions / weight of indoor unit						
• Dimensions (H x W x D)	mm	1243/620/760	1243/620/760	1243/620/760	1950/602/770	1950/602/770
Tilting measure	mm	-	-	-	2150	2150
• Weight	kg	149	165	168	251	270
Minimum sizes of installation room 1)	m³	7.3	9.3	10.9	7.3	9.3
Dimensions / weight of outdoor unit						
• Dimensions (H x W x D)	mm	1200 x 10	090 x 745	1546/1090/745	1200 x 10	090 x 745
• Weight	kg	110	110	150	110	110
Warm water storage unit						
Storage capacity	1	_	_	_	192	192
Maximum storage tank temperature	°C	-	-	-	55	55
Maximum storage tank temperature with electric immersion heater	°C	-	-	-	75	75
• Output capacity at 46 °C draw-off temperature - heat pump 2)	1	-	-	-	260	260
• Output capacity at 40 °C draw-off temperature - heat pump 2)	1	-	-	-	315	315

¹⁾ If the installation room is smaller than the required minimum size, it must be designed as a machine room in accordance with EN 378.

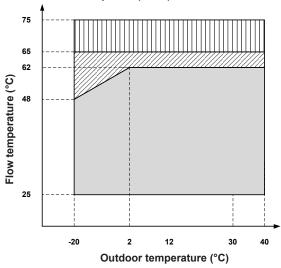
 $^{^{2)}\,}$ 12 °C cold water temperature/58 °C storage tank temperature

³⁾ Oil lifting bends must be installed according to specifications (see engineering notices)

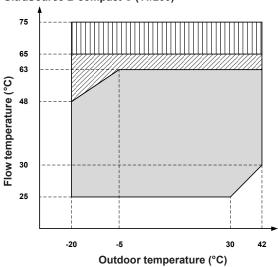
⁴⁾ The sound pressure levels indicated apply if the outdoor unit is placed at a building façade. These values are reduced by 3 dB if the outdoor unit is free-standing. With installation in a corner, the sound pressure level increases by 3 dB.

⁵⁾ The sound values apply with a clean evaporator. These values are temporarily exceeded before defrosting.

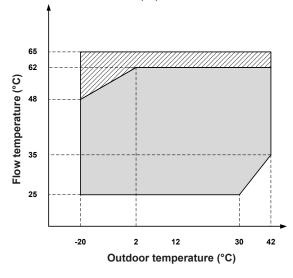
⁶⁾ The sound power level is reduced by 4 dB(A) in whisper mode.


Hova

■ Technical data

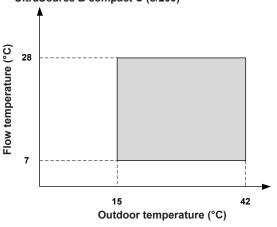

Diagrams of application areas

Heating and hot water

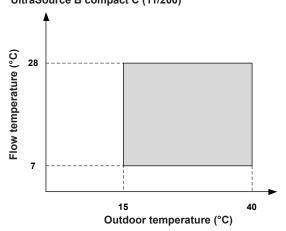

UltraSource B comfort C (8)
UltraSource B compact C (8/200)

UltraSource B comfort C (11)
UltraSource B compact C (11/200)

UltraSource B comfort C (17)


Application area heating/domestic hot water heat pump (UltraSource B comfort C and compact C)

Extended application area heating/domestic hot water heat pump including electric immersion heater (UltraSource B comfort C and compact C)

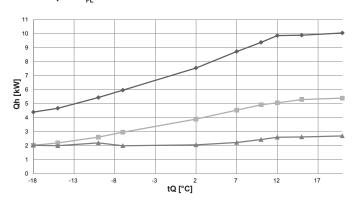

Extended application area domestic hot water heat pump including electric immersion heater (only UltraSource B compact C)

Cooling

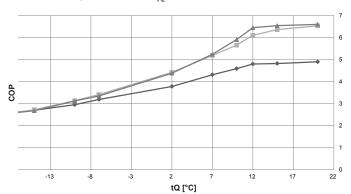
UltraSource B comfort C (8) UltraSource B compact C (8/200)

UltraSource B comfort C (11,17) UltraSource B compact C (11/200)

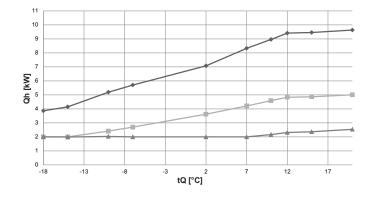
Application area cooling heat pump (UltraSource B comfort C and compact C)

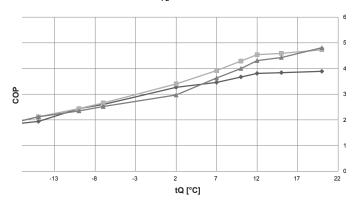

Performance data - heating

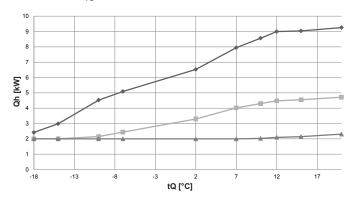
Maximum heat output allowing for defrosting losses

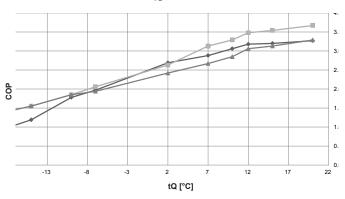

Hoval UltraSource B comfort C (8), compact C (8/200)

Data according to EN 14511


Heat output - t_{FL} 35 °C


Coefficient of performance - t_{FL} 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - $t_{\rm FL}$ 45 °C

Heat output - t_{FL} 55 °C

Coefficient of performance - $\rm t_{FL}$ 55 °C

Observe daily power interruptions! see engineering

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

Minimum output

Performance data - heating

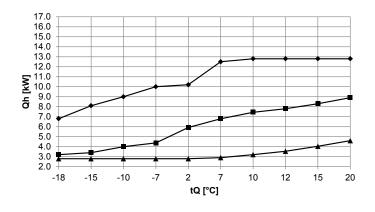
Hoval UltraSource B comfort C (8), compact C (8/200)

Data according to EN 14511

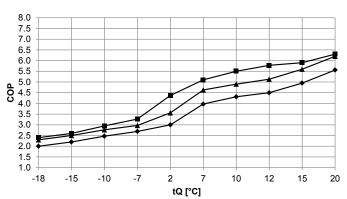
		Ma	aximum out	put	ı	Nominal outp	ut	Mi	inimum outp	ut
tFL	tQ	Qh	Р	COP	Qh	P	COP	Qh	Р	COP
°C	°C	kW	kW		kW	kW		kW	kW	
	-18	4.4	1.7	2.6	2	0.8	2.6	2	0.8	2.6
	-15	4.7	1.7	2.7	2.2	0.8	2.7	2	0.8	2.7
	-10	5.4	1.8	3	2.6	0.8	3.1	2.2	0.7	3.1
	-7	6	1.9	3.2	2.7	0.9	3.4	2	0.6	3.4
35	2	7.6	2	3.8	3.9	0.9	4.4	2.1	0.5	4.4
33	7	8.7	2	4.3	4.5	0.9	5.2	2.2	0.4	5.2
	10	9.4	2	4.6	4.9	0.9	5.7	2.4	0.4	5.9
	12	9.9	2.1	4.8	5.1	0.8	6.1	2.6	0.4	6.5
	15	9.9	2.1	4.8	5.3	0.8	6.4	2.6	0.4	6.5
	20	10.1	2.1	4.9	5.4	0.8	6.5	2.7	0.4	6.6
	-18	3.9	2.1	1.8	2	1.1	1.9	2	1.1	1.9
	-15	4.2	2.1	1.9	2	0.9	2.1	2	0.9	2.1
	-10	5.2	2.1	2.4	2.4	1	2.4	2	0.9	2.4
	-7	5.7	2.2	2.6	2.7	1	2.7	2	8.0	2.5
45	2	7.1	2.2	3.3	3.6	1.1	3.4	2	0.7	3
45	7	8.3	2.4	3.5	4.2	1.1	3.9	2	0.6	3.6
	10	9	2.4	3.7	4.6	1.1	4.3	2.2	0.5	4
	12	9.4	2.5	3.8	4.8	1.1	4.5	2.3	0.5	4.3
	15	9.5	2.5	3.8	4.9	1.1	4.6	2.4	0.5	4.4
	20	9.6	2.5	3.9	5	1.1	4.7	2.5	0.5	4.8
	-18	2.9	2.3	1.3	2	1.3	1.5	2.0	1.3	1.6
	-15	3.4	2.3	1.5	2	1.2	1.7	2.0	1.2	1.7
	-10	4.7	2.3	2.0	2.3	1.1	2	2.1	1.0	2.1
	-7	5.3	2.4	2.2	2.6	1.2	2.2	2.0	0.9	2.2
50	2	6.8	2.3	2.9	3.5	1.2	2.9	2.0	0.7	2.8
50	7	8.2	2.6	3.1	4.1	1.2	3.4	2.1	0.7	2.9
	10	8.8	2.6	3.4	4.5	1.2	3.7	2.1	0.6	3.4
	12	9.2	2.6	3.5	4.7	1.2	3.9	2.2	0.6	3.6
	15	9.2	2.6	3.5	4.7	1.2	3.9	2.3	0.6	3.7
	20	9.5	2.6	3.6	4.9	1.2	4.1	2.4	0.6	3.8
	-18	2.4	2.5	1	2	1.4	1.4	2	1.4	1.4
	-15	3	2.5	1.2	2	1.3	1.6	2	1.3	1.6
	-10	4.5	2.5	1.8	2.2	1.2	1.9	2	1.1	1.9
	-7	5.1	2.6	2	2.4	1.2	2.1	2	1	1.9
	2	6.5	2.4	2.7	3.3	1.3	2.6	2	0.8	2.4
55	7	8	2.8	2.9	4	1.3	3.1	2	0.8	2.7
	10	8.6	2.8	3.1	4.3	1.3	3.3	2	0.7	2.9
	12	9	2.8	3.2	4.5	1.3	3.5	2.1	0.7	3.1
	15	9	2.8	3.2	4.6	1.3	3.5	2.2	0.7	3.1
	20	9.3	2.8	3.3	4.7	1.3	3.7	2.3	0.7	3.3
	-18	-	-	-	-	-	-	-	-	-
	-15	-	-	-	-	-	-	-	-	-
	-10	-	-	-	-	-	-	-	-	-
	-7	4.9	2.6	1.9	2.3	1.2	1.9	1.9	1.0	1.9
60	2	6.1	2.4	2.5	3.1	1.3	2.4	1.9	0.8	2.3
(92 %)	7	7.8	3.0	2.6	3.9	1.4	2.9	2.0	0.9	2.3
,	10	8.4	3.0	2.8	4.2	1.4	2.9	2.0	0.8	2.6
	12	8.6	3.0	2.9	4.3	1.4	3.1	2.0	0.8	2.7
	15	8.6	3.0	2.9	4.4	1.4	3.1	2.1	0.8	2.8
	20	9.1	3.0	3.0	4.6	1.4	3.3	2.3	0.8	3.0
		J						_,~		

tFL = Heating flow temperature (°C)
tQ = Source temperature (°C)
Qh = Heat output (kW), measured in accordance with standard EN 14511
P = Power consumption, overall unit (kW)
COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

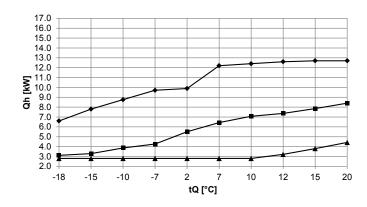
Observe daily power interruptions! see engineering

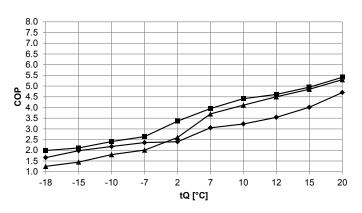

Performance data – heating

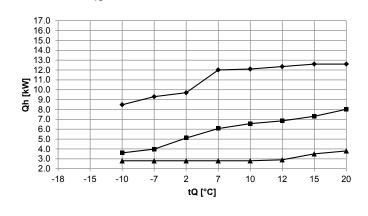
Maximum heat output allowing for defrosting losses

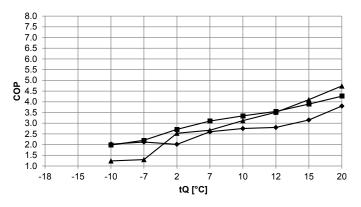

Hoval UltraSource B comfort C (11), compact C (11/200)

Data according to EN 14511


Heat output - t_{FL} 35 °C


Coefficient of performance - t_{FL} 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - t_{FL} 45 °C

Heat output - t_{FL} 55 °C

Coefficient of performance - t_{FL} 55 °C

Observe daily power interruptions! see engineering

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

Minimum output

Performance data - heating

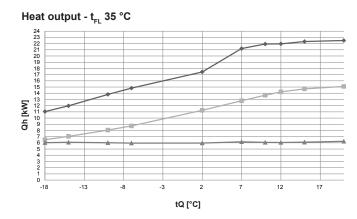
Hoval UltraSource B comfort C (11), compact C (11/200)

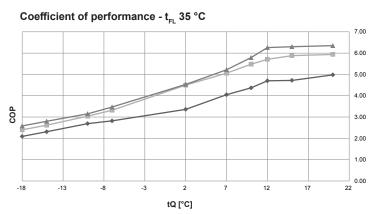
Data according to EN 14511

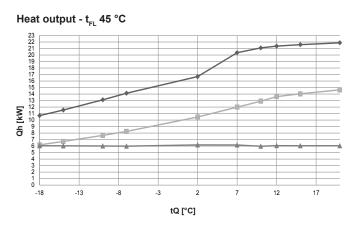
		Ma	aximum out	out	N	lominal outp	ut	M	inimum outp	ut
tFL	tQ	Qh	P	COP	Qh	P	COP	Qh	P	COP
°C	°C	kW	kW		kW	kW		kW	kW	
	-18	6.8	3.4	2.0	3.2	1.3	2.4	2.8	1.2	2.3
	-15	8.1	3.6	2.2	3.4	1.3	2.6	2.8	1.1	2.5
	-10	9.0	3.6	2.5	4.0	1.4	3.0	2.8	1.0	2.8
35	-7	10.0	3.7	2.7	4.4	1.3	3.3	2.8	0.9	3.0
	2	10.2	3.4	3.0	5.9	1.4	4.4	2.8	0.8	3.6
35	7	12.5	3.2	4.0	6.8	1.3	5.1	2.9	0.6	4.6
	10	12.8	3.0	4.3	7.4	1.4	5.5	3.2	0.7	4.9
	12	12.8	2.9	4.5	7.8	1.4	5.8	3.5	0.7	5.1
	15	12.8	2.6	5.0	8.3	1.4	5.9	4.0	0.7	5.6
	20	12.8	2.3	5.6	8.9	1.4	6.3	4.6	0.7	6.2
	-18	6.6	4.0	1.7	3.1	1.6	2.0	2.8	2.2	1.3
	-15	7.8	3.9	2.0	3.3	1.6	2.1	2.8	1.9	1.5
	-10	8.8	4.0	2.2	3.9	1.6	2.4	2.8	1.6	1.8
	-7	9.7	4.1	2.4	4.3	1.6	2.6	2.8	1.4	2.0
45	2	9.9	4.1	2.4	5.5	1.6	3.4	2.8	1.1	2.6
	7	12.2	4.0	3.1	6.4	1.6	4.0	2.8	0.8	3.7
	10	12.4	3.8	3.2	7.1	1.6	4.4	2.8	0.7	4.1
	12	12.6	3.6	3.5	7.4	1.6	4.6	3.2	0.7	4.5
	15	12.7	3.2	4.0	7.9	1.6	5.0	3.8	0.8	4.9
	20	12.7	2.7	4.7	8.4	1.6	5.4	4.4	0.8	5.3
50	-18	6.4	4.2	1.5	3.0	1.7	1.8	2.7	2.4	1.1
	-15	7.4	4.2	1.8	3.1	1.7	1.9	2.6	2.0	1.3
	-10	8.6	4.1	2.1	3.7	1.7	2.2	2.8	1.9	1.5
	-7	9.5	4.3	2.2	4.1	1.7	2.4	2.8	1.8	1.6
	2	9.8	4.5	2.2	5.3	1.8	3.0	2.8	1.1	2.6
	7	12.1	4.3	2.8	6.3	1.8	3.5	2.8	0.9	3.1
	10	12.3	4.1	3.0	6.8	1.8	3.9	2.8	0.8	3.5
	12	12.5	4.0	3.1	7.1	1.7	4.1	3.1	0.8	4.0
	15	12.7	3.6	3.5	7.6	1.7	4.4	3.7	0.8	4.5
	20	12.7	3.0	4.2	8.2	1.7	4.8	4.1	0.8	5.0
	-18	-	-	-	-	-	-	-	-	-
	-15	_	_	_	_	_	_	_	_	_
	-10	8.5	4.2	2.0	3.6	1.8	2.0	2.8	2.3	1.2
	-7	9.3	4.4	2.1	4.0	1.8	2.2	2.8	2.2	1.3
	2	9.7	4.8	2.0	5.1	1.9	2.7	2.8	1.1	2.5
55	7	12.0	4.6	2.6	6.1	2.0	3.1	2.8	1.1	2.7
	10	12.0	4.6	2.8	6.6	2.0	3.1	2.8	0.9	3.1
	10	12.1	4.4 4.4	2.8	6.9	2.0 1.9	3.3 3.6	2.0	0.9	3.1 3.5
	15	12.6	4.0	3.2	7.3	1.9	3.9	3.5	0.9	4.1
	20	12.6	3.3	3.8	8.0	1.9	4.3	3.8	0.8	4.7
	-18	-	-	-	-	-	-	-	-	-
	-15	-	-	-	-	-	-	-	-	-
	-10	-	-	-	-	-	-	-	-	-
	-7	-			-	-	-	-	-	-
62	2	8.3	5.7	1.5	4.8	2.3	2.1	-	-	-
32	7	10.4	5.6	1.9	5.7	2.4	2.4	-	-	-
	10	10.9	5.3	2.1	6.3	2.4	2.6	-	-	-
	12	10.9	5.0	2.2	6.6	2.4	2.8	-	-	-
	15	10.9	4.1	2.7	7.0	2.2	3.2	-	-	-
	20	11.2	3.7	3.1	7.8	2.2	3.6		_	_

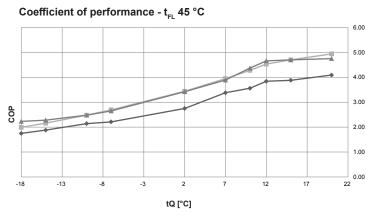
tFL = Heating flow temperature (°C)
tQ = Source temperature (°C)
Qh = Heat output (kW), measured in accordance with standard EN 14511
P = Power consumption, overall unit (kW)
COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

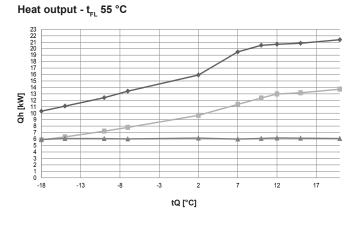
Observe daily power interruptions! see engineering

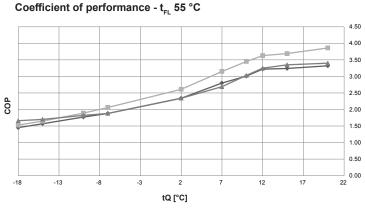



Performance data - heating


Maximum heat output allowing for defrosting losses


Hoval UltraSource B comfort C (17)


Data according to EN 14511



Observe daily power interruptions! see engineering

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

Minimum output

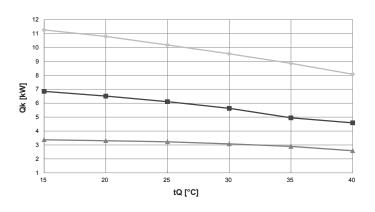
Performance data - heating

Hoval UltraSource B comfort C (17) Data according to EN 14511

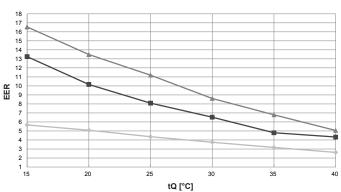
		Ma	ximum out	put	N	lominal outpu	ut	М	inimum outp	ut
tFL	tQ	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP
°C	°C	kW	kW		kW	kW		kW	kW	
	-18	11	5.3	2.1	6.5	2.7	2.4	6	2.3	2.6
	-15	12	5.2	2.3	7.1	2.7	2.6	6.1	2.2	2.8
	-10	13.8	5.1	2.7	8.1	2.7	3	6	2	3
	-7	14.8	5.3	2.8	8.7	2.6	3.3	6	1.7	3.5
35	2	17.4	5.2	3.4	11.3	2.5	4.5	6.0	1.3	4.5
33	7	21.2	5.2	4.1	12.8	2.5	5.1	6.2	1.2	5.2
	10	21.9	5	4.4	13.7	2.5	5.5	6.1	1	5.8
	12	22	4.7	4.7	14.2	2.5	5.7	6.1	1	6.3
	15	22.3	4.7	4.7	14.7	2.5	5.9	6.1	1	6.3
	20	22.5	4.5	5	15.1	2.5	5.9	6.3	1	6.4
	-18	10.7	6.1	1.8	6.2	3.1	2	6	2.7	2.2
	-15	11.5	6.1	1.9	6.7	3.1	2.2	6	2.6	2.3
	-10	13.1	6.1	2.1	7.6	3.1	2.5	6	2.4	2.5
	-7	14.1	6.4	2.2	8.3	3.1	2.7	6	2.3	2.7
45	2	16.7	6.1	2.8	10.5	3	3.4	6.2	1.8	3.4
	7	20.4	6	3.4	12	3	4	6.2	1.6	3.9
	10	21.1	5.9	3.6	12.9	3	4.3	6	1.4	4.4
	12	21.4	5.6	3.8	13.6	3	4.5	6.1	1.3	4.7
	15	21.6	5.6	3.8	14	3	4.7	6	1.3	4.7
	20	21.9	5.4	4.1	14.7	3	4.9	6	1.3	4.8
	-18	10.5	6.7	1.6	6	3.7	1.6	6.0	3.3	1.8
	-15 -10	11.3 12.8	6.6 6.5	1.7 2.0	6.5 7.4	3.7 3.6	1.8 2.1	6.1 6.1	3.2 3.0	1.9 2.0
	-10 -7	13.8	6.7	2.0	8	3.6	2.1	6.0	2.8	2.0
	2	16.3	6.4	2.5	10.1	3.5	2.9	6.1	2.3	2.7
50	7	19.9	6.6	3.0	11.7	3.4	3.4	6.0	2.0	3.1
	10	20.9	6.4	3.3	12.6	3.4	3.7	6.1	1.8	3.4
	12	21.0	6.0	3.5	13.3	3.4	4	6.1	1.7	3.7
	15	21.3	6.0	3.6	13.6	3.3	4.1	6.1	1.6	3.8
	20	21.7	5.9	3.7	14.2	3.3	4.3	6.1	1.6	3.9
	-18	10.3	7.1	1.5	5.9	3.8	1.5	6	3.6	1.7
	-15	11.1	7.1	1.6	6.3	3.8	1.7	6.1	3.6	1.7
	-10	12.4	7	1.8	7.2	3.8	1.9	6.1	3.3	1.8
	-7	13.4	7.1	1.9	7.8	3.8	2.1	6	3	1.9
	2	15.9	6.8	2.3	9.7	3.7	2.6	6.1	2.6	2.3
55	7	19.5	7	2.8	11.4	3.6	3.2	6	2	2.7
	10	20.5	6.8	3	12.4	3.6	3.5	6	2	3
	12	20.7	6.4	3.2	13	3.6	3.6	6.2	2	3.3
	15	20.9	6.4	3.2	13.2	3.6	3.7	6.1	1.8	3.4
	20	21.4	6.4	3.3	13.7	3.6	3.9	6.1	1.8	3.4
	-18	-	-	-	-	-	-	-	-	-
	-15	-	-	-	-	-	-	-	-	-
	-10	12.1	7.6	1.6	7	4.1	1.7	5.9	3.6	1.6
	-7	13.1	7.7	1.7	7.6	4.1	1.9	5.9	3.5	1.7
62	2	15.2	7.4	2.1	9.3	4	2.3	5.9	2.8	2.1
02	7	19.0	7.6	2.5	11.1	3.9	2.9	5.8	2.4	2.4
	10	20.0	7.2	2.8	12.1	3.8	3.2	6.0	2.1	2.8
	12	20.2	6.8	3.0	12.7	3.8	3.3	6.0	2.0	3.0
	15	20.1	6.9	2.9	12.7	3.9	3.3	5.9	2.0	3.0
	20	20.8	6.9	3.0	13.3	3.9	3.5	5.9	1.9	3.0

tFL = Heating flow temperature (°C)
tQ = Source temperature (°C)
Qh = Heat output (kW), measured in accordance with standard EN 14511
P = Power consumption, overall unit (kW)
COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Observe daily power interruptions! see engineering



Performance data - cooling


Maximum cooling capacity

Hoval UltraSource B comfort C (8), compact C (8/200)

Cooling capacity - $t_{\rm FL}$ 18 °C

Coefficient of performance - $t_{_{\rm FL}}$ 18 °C

Maximum output

Nominal output

■ Minimum output

Hoval UltraSource B comfort C (8), compact C (8/200)

Data according to EN 14511

		Ма	ximum out	put	N	ominal outp	ut	Mi	nimum out	out
tFL	tQ	Qk	Р	EER	Qk	P	EER	Qk	P	EER
°C	°C	kW	kW		kW	kW		kW	kW	
	15	8.1	1.7	4.8	4.7	0.6	7.8	2.4	0.2	10.1
	20	7.7	1.9	4.1	4.5	0.7	6.4	2.2	0.3	7.5
7	25	7.3	2.1	3.5	4.3	8.0	5.3	2.1	0.4	5.9
7	30	6.8	2.3	3	4	0.9	4.4	2.1	0.5	4.4
	35	6.3	2.4	2.6	3.8	1	3.7	2	0.5	3.8
	40	5.8	2.7	2.2	3.4	1.1	3	2	0.7	3.1
	15	9.7	1.8	5.3	5.7	0.6	10.1	2.8	0.2	13.6
	20	9.2	2	4.6	5.3	0.7	7.8	2.8	0.3	10.6
40	25	8.7	2.2	4	5.1	8.0	6.4	2.6	0.3	8.1
12	30	8	2.4	3.4	4.8	0.9	5.3	2.5	0.4	6.4
	35	7.5	2.6	2.9	4.3	1	4.2	2.3	0.5	5.1
	40	6.8	2.8	2.4	4	1.1	3.6	2.2	0.6	3.9
	15	11.3	2	5.7	6.9	0.5	13.3	3.4	0.2	16.5
	20	10.8	2.1	5.1	6.5	0.6	10.2	3.3	0.3	13.5
4.0	25	10.2	2.3	4.4	6.1	8.0	8.1	3.2	0.3	11.2
18	30	9.6	2.6	3.8	5.6	0.9	6.5	3.1	0.4	8.1
	35	8.9	2.8	3.2	5	1	4.8	2.9	0.4	6.8
	40	8.1	3.1	2.6	4.6	1.1	4.3	2.6	0.5	5.1

tFL = Cooling water flow temperature (°C)

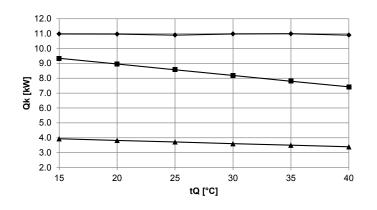
tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

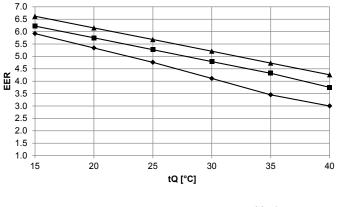
P = Power consumption, overall unit (kW)

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

Observe daily power interruptions! see engineering



Performance data - cooling


Maximum cooling capacity

Hoval UltraSource B comfort C (11), compact C (11/200)

Cooling capacity - $t_{\rm FL}$ 18 °C

Coefficient of performance - t_{FL} 18 °C

→ Maximum output
→ Nominal output
→ Minimum output

Hoval UltraSource B comfort C (11), compact C (11/200)

Data according to EN 14511

		Ma	ximum out	put	N	ominal outp	ut	Mi	inimum outp	out
tFL	tQ	Qk	Р	EER	Qk	P	EER	Qk	P	EER
°C	°C	kW	kW		kW	kW		kW	kW	
	15	11.2	2.4	4.7	6.9	1.4	5.0	2.9	0.6	4.5
	20	10.5	2.5	4.3	6.6	1.5	4.5	2.9	0.7	4.1
7	25	9.9	2.6	3.8	6.2	1.5	4.1	3.0	8.0	3.6
,	30	9.3	2.8	3.3	5.8	1.6	3.6	3.0	0.9	3.2
	35	8.6	3.0	2.8	5.4	1.7	3.1	2.9	1.1	2.8
	40	8.0	3.4	2.6	5.0	1.9	2.6	2.9	1.2	2.3
	15	10.8	2.1	5.2	8.0	1.4	5.6	3.1	0.6	5.4
	20	10.9	2.3	4.6	7.7	1.5	5.1	3.0	0.6	5.0
12	25	10.8	2.7	4.0	7.3	1.6	4.6	2.9	0.7	4.5
12	30	10.8	3.2	3.4	6.9	1.7	4.1	2.8	0.7	4.0
	35	10.1	3.4	3.0	6.5	1.8	3.7	2.9	8.0	3.6
	40	9.5	3.8	2.5	6.1	1.9	3.2	2.9	0.9	3.1
	15	11.0	1.9	5.9	9.3	1.5	6.2	3.9	0.6	6.6
	20	11.0	2.1	5.3	9.0	1.6	5.8	3.8	0.6	6.2
10	25	10.9	2.3	4.8	8.6	1.6	5.3	3.7	0.7	5.7
18	30	11.0	2.7	4.1	8.2	1.7	4.8	3.6	0.7	5.2
	35	11.0	3.2	3.5	7.8	1.8	4.3	3.5	0.7	4.7
	40	10.9	3.6	3.0	7.4	2.0	3.8	3.4	8.0	4.3

tFL = Cooling water flow temperature (°C)

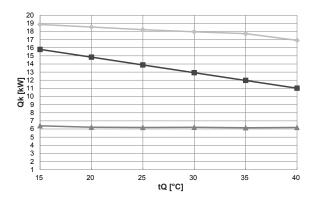
tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

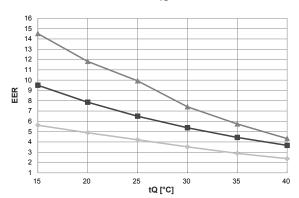
P = Power consumption, overall unit (kW)

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

Observe daily power interruptions! see engineering



Performance data - cooling


Maximum cooling capacity

Hoval UltraSource B comfort C (17)

Cooling capacity - $t_{\rm FL}$ 18 °C

Coefficient of performance - $t_{_{\rm FL}}$ 18 °C

Maximum outputNominal outputMinimum output

Hoval UltraSource B comfort C (17)

Data according to EN 14511

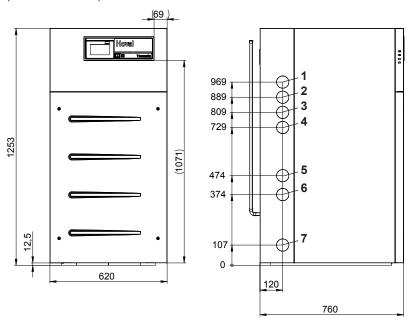
		Ma	ximum out	put	N	ominal outp	ut	Mi	nimum out	out
tFL	tQ	Qk	Р	EER	Qk	P	EER	Qk	P	EER
°C	°C	kW	kW		kW	kW		kW	kW	
	15	16.5	3.9	4.2	11.2	1.7	6.5	6.2	0.7	8.5
	20	16.2	4.6	3.5	10.5	1.9	5.6	6.2	0.9	7
7	25	15.5	5.3	2.9	9.8	2.1	4.7	6.2	1.1	5.7
7	30	14.9	6.2	2.4	9.1	2.3	4	6.1	1.3	4.7
	35	14.2	7.7	1.9	8.5	2.5	3.4	6.1	1.6	3.8
	40	13.5	9	1.5	7.9	2.8	2.9	6	1.9	3.1
	15	18.2	3.7	5	13.4	1.7	7.9	6.3	0.5	11.7
	20	17.9	4.3	4.2	12.6	1.9	6.6	6.1	0.7	9.2
10	25	17.2	5	3.5	11.8	2.1	5.6	6.1	8.0	7.3
12	30	16.4	5.8	2.8	10.9	2.4	4.6	6.2	1.1	5.6
	35	15.5	7.1	2.2	10	2.6	3.9	6.1	1.4	4.4
	40	14.7	8.2	1.8	9.2	2.9	3.2	6.1	1.7	3.6
	15	18.9	3.4	5.6	15.8	1.7	9.5	6.4	0.4	14.5
	20	18.5	3.8	4.9	14.8	1.9	7.9	6.2	0.5	11.8
40	25	18.2	4.3	4.2	13.9	2.1	6.5	6.2	0.6	9.9
18	30	18	5.1	3.5	12.9	2.4	5.4	6.2	8.0	7.4
	35	17.7	6.1	2.9	12	2.7	4.4	6.2	1.1	5.7
	40	16.9	7.1	2.4	11	3	3.7	6.2	1.4	4.3

tFL = Cooling water flow temperature (°C)

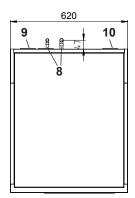
tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

P = Power consumption, overall unit (kW)


EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

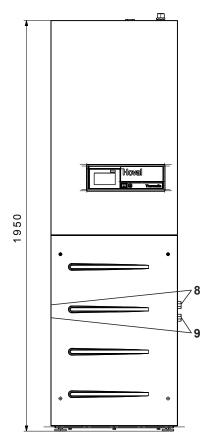
Observe daily power interruptions! see engineering

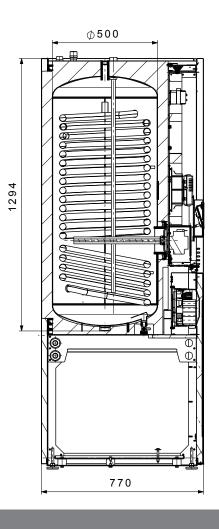


Hoval UltraSource B comfort C (8-17) Indoor unit

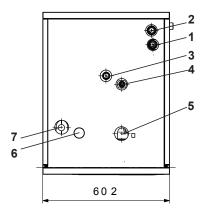
(Dimensions in mm)

View from above




Connections (1-7) optionally on the left or right

- 1 Free
- 2 Flow heating 1"
- 3 Flow hot water charging 1"
- 4 Free
- 5 Free
- 6 Free
- 7 Return heating 1"
- 8 Working medium lines
- 9 Cable feed-in main current
- 10 Cable feed-in sensors

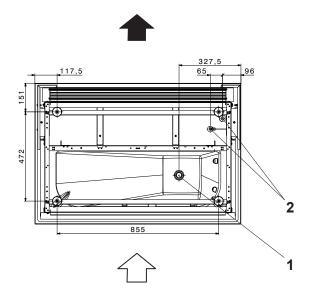

Hoval UltraSource B compact C (8,11/200) Indoor unit with calorifier

(Dimensions in mm)

View from above

- 1 Flow heating 1"
- 2 Return heating 1"
- 3 Hot water connection 3/4"
- 4 Cold water connection 3/4"
- 5 Cable feed-in sensors
- 6 Circulation connection 3/4"
- 7 Cable feed-in main current
- 8 Working medium line
- 9 Working medium line

Hoval UltraSource B Outdoor unit

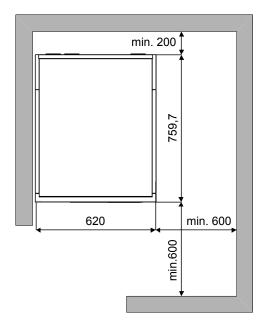

(Dimensions in mm)

Front view

Suction side Suction side Exhaust side

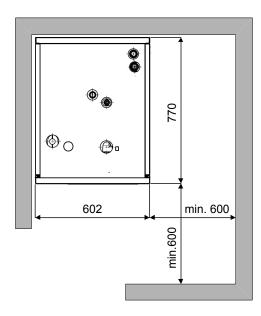
View from left

View from below


- 1 Condensate drain (Rp 1")
- 2 Connections for working medium lines Ø 10,12,16 or 18

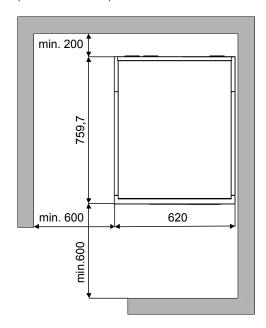
Space requirement

Hoval UltraSource B comfort C (8-17) left Indoor unit


(Dimensions in mm)

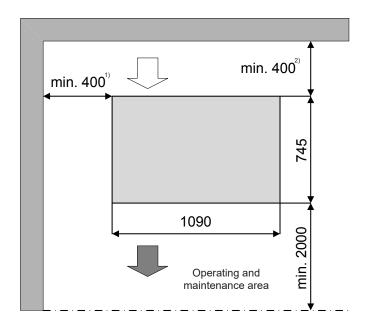
A gap of at least 200 mm must be guaranteed at the rear for the working medium as well as electrical connection.

Hoval UltraSource B compact C (8,11/200) Indoor unit


(Dimensions in mm)

Due to the need for access to the 3-way changeover ball cock for heating and domestic hot water, a gap of at least 600 mm must be guaranteed on the right side.

Hoval UltraSource B comfort C (8-17) right Indoor unit

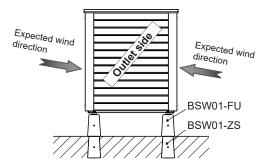

(Dimensions in mm)

Hoval UltraSource B Outdoor unit

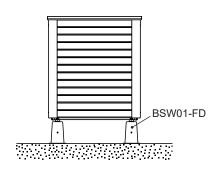
(Dimensions in mm)

View from above

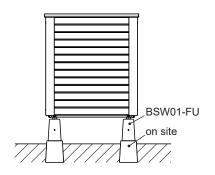
- Due to the need for access during maintenance, a gap of 400 mm must be guaranteed on both sides.
- 2) If the air intake grille can not be lifted upwards, there must be a gap of min. 600 mm on the suction side.

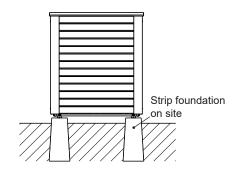


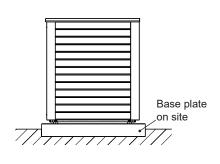
Space requirement


Installation variants for Hoval UltraSource B outdoor unit

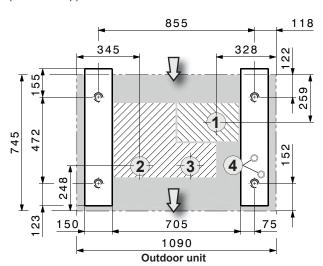
(Dimensions in mm)

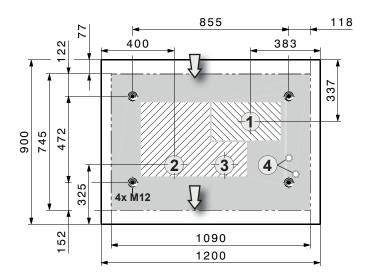

Firm base with Hoval concrete base set




Flat roof or existing firm base

Firm base on site

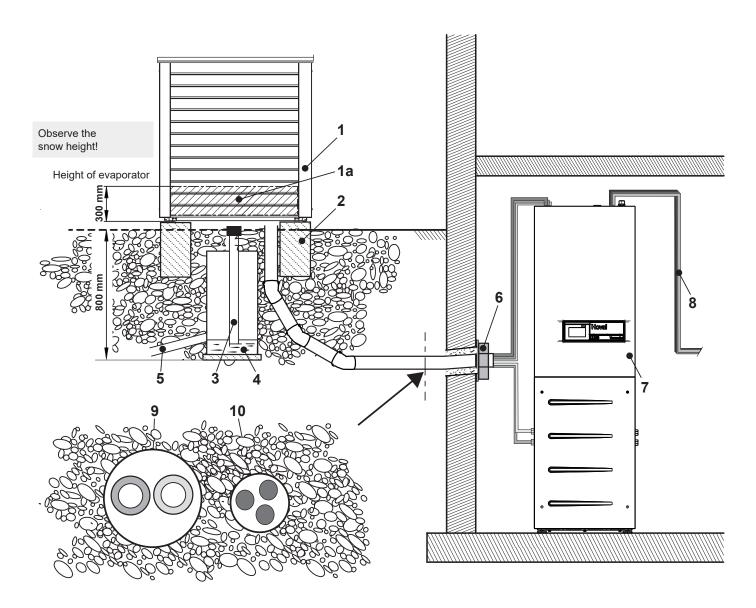



Strip foundation

Plan concrete base set (view from top)

Floor plate

Floor plan (view from top)



- Optimum position for condensate drain DN 100 Upper edge of condensate drain 50 - 100 mm above floor level Alternative: without drain. Infiltration of the condensate into the ground.
- Optimum position of empty tube DN 150 for refrigerant connection lines Upper edge of empty tube 50 - 100 mm above strip foundation level
- Optimum position for empty tube for electrical cables
- Connections for working medium lines

Possible area for empty piping in the concrete base

Possible area for condensate drain in the concrete base

Configuration and connection diagram for Hoval UltraSource B

- 1 UltraSource outdoor unit
- 1a Space for connection of working medium lines, condensate drain etc.
- 2 Concrete base
- 3 Condensate drain (Rp 1")
- 4 Possible variant with duct / gravel bed
- 5 Discharge into the sewer system
- 6 Wall lead-through (hydraulic and electrical connections)
- 7 UltraSource indoor unit
- 8 Main current 400 V 3N
 Control current 1x 230 V
 Main current immersion heater 400 V 3N

Network cables (optional)

- 9 Empty pipe for working medium lines (8) (11) (17)
 Suction gas line (8) (11) (17)
 Liquid line (8) (11) (17)
 ½" 5/8" 3/4"
 ½" ½"
- 10 Empty tube for electrical connections for outdoor unit
 Control current outdoor unit
 1x 230 V
 Trace heating tape
 1x 230 V
 Data bus RS485

Engineering

Requirements and directives

The general requirements and directives listed in the Chapter Engineering apply.

Set-up

- The distance between the indoor and outdoor unit must be as short as possible. Only short and simple routing of refrigerant lines guarantees cost effectiveness.
- The maximum permissible length of the lines between the outdoor and indoor unit is 20 m and must not be exceeded.
- The maximum height difference between the outdoor and indoor unit is 10 m and must not be exceeded either.
- If the height difference between the indoor and outdoor unit is less than 5 m, an oil lifting bend must be installed in the suction gas line before the slope. If the height difference is greater, this measure must also be taken every 5 m (see assembly instructions).
 The oil lifting bends must be installed by a specialist refrigeration engineer. It does not matter whether the indoor or the outdoor unit is higher.
- Due to efficient water heating, the line length with the UltraSource B comfort C between the calorifier and the indoor unit is not allowed to be more than 10 m.

Indoor unit

- The installation location must be selected in accordance with the valid requirements and directives. In particular, EN 378 Parts 1 and 2 as well as BGR 500 must be complied with.
- The indoor unit must be installed in a room protected against frost, by an approved specialist company. Room temperature must be between 5 °C and 25 °C.
- If the installation room is smaller than the required minimum size, it must be designed as a machine room in accordance with the provisions of EN 378.
- Installation in wet rooms, dusty rooms or rooms with a potentially explosive atmosphere is not permitted.
- To minimise vibration and noise inside the building, heat pumps should be isolated as well as possible from the building structure. For example heat pumps should never be installed on lightweight ceilings/floor. In the case of floating screed, a recess should be cut in the screed and the impact sound insulation around the heat pump.
- The connections for the working medium lines in the UltraSource B comfort C are on the back and in the UltraSource B compact C are either on the right or left of the heat pump.
- The connections for the heating flow and return in the UltraSource B comfort C are on either the left or right and in the UltraSource B compact C they are on the top.
- The connections for hot and cold water as well as for the hot water circulation are also located on top in the UltraSource B compact C.
- A gap of at least 600 mm must be observed for maintenance work on the front and, depending on where the working agent connection lines are connected, on the right or left side, of the heat pump (see dimensions/ space requirement).

 False flow rates as a result of incorrect dimensions of the pipework, incorrect fittings or improper pump operation can cause damage to the heat pump.

The installation of a magnetic sludge separator is mandatory.

Outdoor unit

The outdoor unit is installed outdoors. The installation location must be selected carefully. It is essential that the following ancillary conditions are met:

- · Maximum line length see set-up.
- Maximum height difference between the indoor and outdoor units see set-up.
- The installation location must be chosen in such a way that no noise pollution can occur (do not install near bedrooms, keep a distance from neighbours), hedges and bushes can have a sound-absorbing effect.
- A frost-proof connection of the condensate drain is required.
- Unobstructed air inflow and outflow must be possible.
- It is imperative that the minimum distances are observed (see dimensions/space requirement)
- The intake air must be free of impurities such as sand and aggressive substances such as ammonia, sulphur, chlorine etc.
- The outdoor unit must be installed on a load-bearing fixed structure.
- If the machine is installed at wind-prone locations (e.g. on the roof), the alignment of the machine must be selected in such a way that the expected wind direction is normal to the suction direction of the outdoor unit.
- If it is not possible to install in areas subject to strong winds, an additional wind shield in the form of a hedge, for example, should be installed.
- If the installation location is not protected against snowfall, it must be chosen in such a way that the evaporator remains free of snow in any case.
- The outdoor unit must always be installed on a solid surface in a horizontal position.
 This can be achieved by means of specially installed concrete bases.
- The load-bearing capability must be adequate. The unit must be fixed there four times with M10 screws.
- Air heat pumps generate condensation during operation. This can be up to 6 litres per defrost cycle within 2 minutes for the outdoor unit of the UltraSource.
- The condensate drain must be protected against frost.
- The condensate collection tank included in the outdoor unit is already equipped with a tank heater at the factory and thus prevents freezing.
- The condensate drain line is also secured with the preassembled heating tape.
- The air outlet has increased susceptibility to frost. Gutters, water pipes and water containers must not be situated right next to the outlet.

- If installed near the coast, the location must be at least 5 km from the coastline. If this safe distance is not complied with, increased corrosion can be expected. These cases are excluded from the warranty.
- To prevent damage caused by animals such as rodents or insects, all cable ducts must be properly sealed.

Electrical connections

- The electrical connection must be carried out by a qualified technician and registered with the responsible energy supply company. The relevant electrical installation company is responsible for ensuring that electrical connection is carried out in accordance with standards and that safeguard measures are put in place.
- The mains voltage at the connection terminals of the heat pump must be 400 V or 230 V +/-10 %. The dimensions of the connection line must be checked by the electrical company carrying out the work.
- A fault-current circuit breaker is recommended. A "zeroing TN-S" can be used instead of the RCCB type B. Country-specific requirements must be complied with. If the "fault-current circuit breaker" safeguard measure is implemented nevertheless by the electrical company, a separate fault-current circuit breaker is recommended for the heat pumps.
- This residual-current circuit breaker must be of the all-current-sensitive type B (IΔN ≥ 300 mA). The specified RCCB types apply to the heat pump regardless of externally connected components (refer to assembly instructions, data sheets).
- Owing to the starting currents that occur, circuit breakers with a type "C" or "K" tripping characteristic are to be used for the main circuit.
- For the control circuit and additional electric heating (if present), circuit breakers with a type "B" or "Z" tripping characteristic are sufficient.
- The electrical connecting and feeder lines must be copper cables.
- Please refer to the wiring diagram for electrical details.
- Wall lead-through, protective pipe for routing of the lines
- The wall feedthrough should slope down from the inside to the outside.
- To avoid damage, the opening should be padded on the inside or, for example, lined with a PVC pipe.
- After installation, the wall opening must be sealed with a suitable sealing compound on site, observing the fire protection regulations.

Engineering

Routing of the working medium line

- If the working medium connecting lines are laid in the ground, this must be done in a protective tube. For example, this can be a PVC pipe with a diameter of 150 mm. Only 15° and 30° bends are to be used for empty pipe installation (no 45° and 90° bends).
- The total change of direction of all bends must not exceed 150° (important for routing in the ground)
- Wall ducts slightly tilted to the outside or seal on site
- Empty tube without a change of direction: min. 100 mm
- Under no circumstances are the working medium lines allowed to be laid flush-mounted in the building.
- Routing in the screed (underlay) must be avoided. If there is no other possibility, especial care is important. The installer should route the refrigerant line in collaboration with Hoval customer service.
- After the working medium line has been laid, it must be checked for damage and reinsulated. In case of cooling, condensate can form on the pipes.
- The working medium lines are only allowed to be connected and working medium is only allowed to be handled by authorised personnel of Hoval or by trained specialist personnel.
- The flow of working medium in the connecting lines can cause flow noise. The working medium lines must be laid decoupled from the building and must never be laid flushmounted.
- Care must be taken to ensure that neither working medium nor water pipes pass through the sleeping or living areas.
- The shut-off valves are not allowed to be opened until immediately before commissioning.

Room cooling

- Room cooling can be provided by fan convectors and is recommended. The connection lines for the fan convectors must have condensation-proof insulation. In addition, the condensate from the fan convectors must be drained off.
- We do not recommend the use of panel heating for room cooling. Various criteria such as temperatures below the dewpoint or the temperature profile must be allowed for and can lead to costly consequential damage in the case of inadequate planning or incorrect use. We recommend that you consult Hoyal

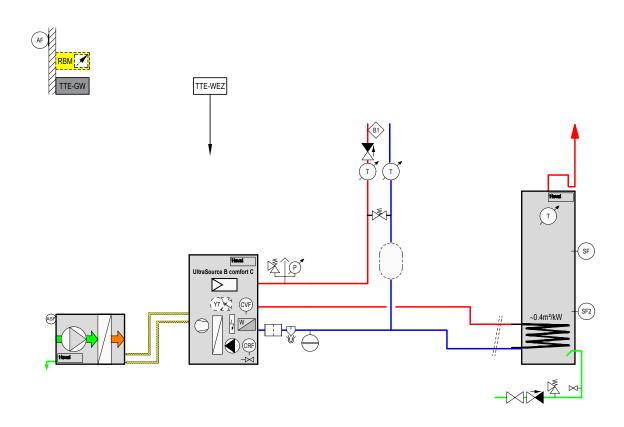
Additional instructions see "Engineering"

Connection on drinking water side

- The hydraulic connection is made according to the information in the corresponding diagrams from Hoval.
- According to the Drinking Water Regulation and DIN 50930-6, the domestic hot water storage tank is suitable for normal drinking water (pH value > 7.3).
- The connection piping can be made using galvanised pipes, stainless steel pipes, copper pipes or plastic pipes.
- · The connections must be made pressure-tight.
- The safety devices tested for the components in accordance with DIN 1988 and DIN 4753 must be installed in the cold water pipe.
- The 10 bar operating pressure stated on the rating plate is not allowed to be exceeded. Install a pressure reducing valve if necessary.
- A suitable water filter must be installed in the cold water pipe.
- A water softener should be installed if the water is hard.

Installation on heating side

- All pertinent laws, regulations and standards for heating house pipework and for heat pump systems must be complied with.
- It is imperative that a strainer and sludge trap is installed in the heating return upstream from the heat pump.
- The safety and expansion devices for closed heating systems must be provided in accordance with EN 12828.
- Dimensioning of the pipework must be done according to the required flow rates.
- Ventilation possibilities must be provided at the highest point and drainage possibilities at the lowest points of the connecting lines.
- To prevent energy losses, the connecting lines must be insulated with suitable material.


■ Examples

UltraSource B comfort C

Air/water heat pump with

- Calorifier
- 1 direct circuit

Hydraulic schematic BBAKE010

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

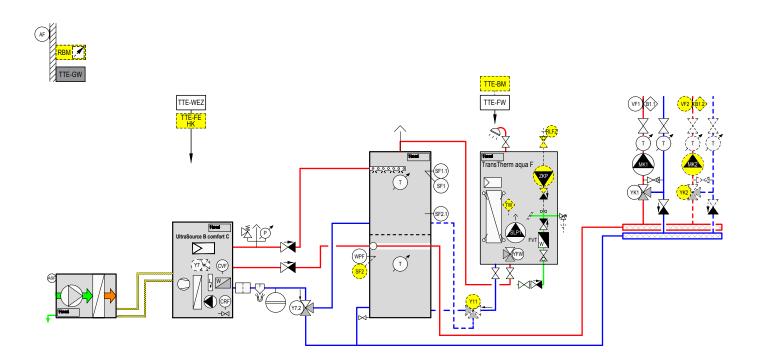
TTE-H-Gen TopTronic® E basic module heat generator (installed) В1 Flow temperature monitor (if required)

ΑF Outdoor sensor SF Calorifier sensor SF2 Calorifier sensor 2 Switching valve ASF Intake sensor

Option

TopTronic® E room control module TopTronic® E Gateway RBM

TTE-GW


■ Examples

UltraSource B comfort C

Air/water heat pump with

- Energy buffer storage tank
- TransTherm aqua F fresh water module
- 1-... mixer circuit(s)

Hydraulic schematic BBAKE030

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TTE-H-Gen	TopTronic® E basic module heat generator (installed)
-----------	--

TTE-DH TopTronic® E

basic module district heating/fresh water

VF1 Flow temperature sensor 1

B1.1 Flow temperature monitor (if required)

MK1 Pump, mixer circuit 1 YK1 Actuator, mixer 1 ΑF Outdoor sensor SF1 Calorifier sensor 1 SF1.1 Calorifier sensor 1.1 SF2 1 Calorifier sensor 2.1 WPF Heat pump buffer sensor Υ7 Switching valve Y7.2 Switching valve 2

ASF Intake sensor SLP1 Calorifier charging pump

Option

TopTronic® E control module TopTronic® E room control module TopTronic® E Gateway TTE-BM RBM

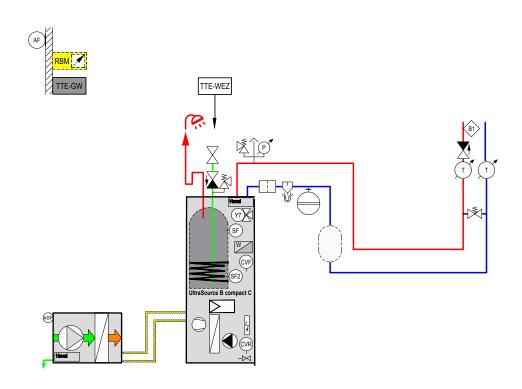
TTE-GW Circulation sensor **RLFZ** SF2 Calorifier sensor 2 Y11 Return switch actuator ZKP Recirculation pump

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 B1.2 Flow temperature sensor 2

Flow temperature monitor (if required)

MC2 Pump, mixer circuit 2 YK2 Actuator, mixer 2


■ Examples

UltraSource B compact C

Air/water heat pump with

- Integrated calorifier
- 1 direct circuit

Hydraulic schematic BBAIE010

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TTE-H-Gen B1 TopTronic® E basic module heat generator (installed) Flow temperature monitor (if required)

AF Outdoor sensor
SF Calorifier sensor
SF2 Calorifier sensor 2
Y7 Switching valve
ASF Intake sensor

Option

RBM TopTronic® E room control module

TTE-GW TopTronic® E Gateway

Hova

Description

Hoval Belaria® comfort ICM Modulating air/water heat pump

- Air/water heat pump in compact design for indoor installation.
- Sturdy housing with steel frame. Removable side walls made of power-coated sheet steel with optimum heat and noise insulation.
 Colour flame red/brown red (RAL 3000/RAL 3011)
- Belaria® comfort ICM (8) with rotary compressor controlled by inverter
 Belaria® comfort ICM (13) with scroll capsule compressor controlled by inverter
- With enclosed scroll compressor controlled by inverter
- With large-area, aluminium/copper ribbed pipe evaporator and plate-type condenser made from stainless steel/Cu
- · Speed-controlled centrifugal fan
- Refrigerant circuit with electronic expansion valve, filter dryer with sight glass, suction-gas heat exchanger, manifold, high and low-pressure pressure controllers
- Efficient defrosting control via reversible refrigeration circuit
- With cooling function with corresponding hydraulics
- Speed-controlled high-efficiency pump installed
- · Flow sensor/flow meter or heat meter
- · Electrical heater 1 to 6 kW
- Filled with refrigerant R410A, wired up internally ready for connection
- Hydraulic connections removable from left or right, hoses 1" see accessories
- Safety set consisting of safety valve, automatic air vent and pressure gauge (see accessories)
- Diaphragm pressure expansion tanks see "Various system components"
- The heat pump can be brought in separately. Separation of the heat pump must be performed by a Hovel specialist.
- TopTronic® E controller installed

TopTronic® E controller

Control panel

- 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTF-WF7)

- Integrated control functions for
 - 1 heating/cooling circuit with mixer

Belaria® comfort ICM (8) available starting July 2019

Hoval	Belaria®	comfort ICM Type	Heat output 1) for A2W35	COP for A2W35	Cooling capacity 1) for A35W18
35 °C	55 °C		kW		kW
Α***	A**	(8)	2.1-6.6	4.3	2.7-8.0
A***	A**	(13)	3.8-12.7	4.1	6.9-13.9

Energy efficiency class of the compound system with control

1) Modulation range

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of \leq 0.23.

Seal of approval FWS

The Belaria® comfort ICM (13) is certified by the CH certification commission.

- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- · Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Rast5 basic plug set

Options for TopTronic® E controller

- · Can be expanded by max.
- 1 module expansion:
- Module expansion heating circuit or
- Module expansion heat balancing or
- Module expansion universal
- Can be networked with up to 16 controller modules in total:
 - Heating circuit/DHW module
 - Solar module
 - Buffer module
 - Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls"

Condensate connection

 Discharge pipe must be configured with a sufficient slope and without a change of section

Heat source connections

(air intake and air blow-off)

- Air intake from the rear (long side)
- Blow-out opening (can be converted for the air blow-out direction to the side left or right)

Electrical connections

- · Connection bottom left or right
- Do not attach any rigid connections (e.g. cable duct) to the heat pump housing

Set-up

 Variable and cost-effective corner installation, air blow-off and hydraulic connection can be selected on the left or right

Options

- Hot water set: Drive motor for 3-way switch ball valve with flexible hose 1", calorifier sensor
- Active cooling mode
- · Internet connection
- · Weatherproof grille
- · Mesh grille
- Wall insulation
- Wall connection elements
- Air hose

Delivery

- One-piece design
- Completely packed

Air/water heat pump Hoval Belaria® comfort ICM

Modulating air/water heat pump for indoor installation for heating, cooling and heating domestic hot water with built-in Hoval TopTronic® E controller.

Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- Can be optionally expanded with max.
 1 module expansion:
 - Module expansion heating circuit or
 - Module expansion heat balancing or
 - Module expansion universal
- Can be optionally networked with up to 16 controller modules in total (incl. solar module)

Without accessories on the air side.

Delivery

- One-piece design, compact unit wired-up internally ready for connection, supplied fully packaged
- The heat pump can be brought in separately.
 Separation of the heat pump must be performed by a Hovel specialist.

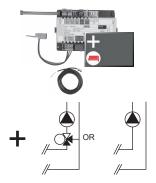
Belaria®	Heat output 1)	Cooling capacity
comfort ICM	for A2W35	for A35W18
Type	kW	kW
(8)	2.1-6.6	2.7-8.0
(13)	3.8-12.7	6.9-13.9

1) Modulation range

Part No.

Belaria® comfort ICM (8) available starting July 2019

Energy efficiency class see description


Hose set

for Belaria® comfort ICM (8,13)
Consisting of:
flexible connection hoses for
heating side insulated 1"
L = 1.0 m, can be shortened on one side

6044 178

7015 989 7015 990

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:

- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer

incl. assembly material 1x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:

- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer each incl. energy balancing

incl. assembly material 3x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. assembly material

Can be installed in: Boiler control, wall housing, control panel

Further information see "Controls" section - "Hoval TopTronic® E module expansions" chapter

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

Part No.

6034 576

6037 062

HovalConnect available from summer 2019

Up to that point, $\mathsf{TopTronic}^{\texttt{@}} \mathsf{E}$ online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 for controller modules and module expansion 6034 503 TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TTE-PS TopTronic® E buffer module 6037 057 TTE-MWA TopTronic® E measuring module 6034 574 TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 comfort white 6037 069 comfort black 6037 070 Enhanced language package TopTronic® E 6039 253 one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HovalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797

TopTronic® E interface modules	
GLT module 0-10 V	6034 578
HovalConnect domestic starter Modbus	6049 501
HovalConnect domestic starter KNX	6049 593
HovalConnect commercial starter Modbus	6049 500
HovalConnect commercial starter KNX	6049 502

TopTronic [®] E v	vall casing	
WG-190	Wall casing small	6035 563
WG-360	Wall casing medium	6035 564
WG-360 BM	Wall casing medium with	6035 565
	control module cut-out	
WG-510	Wall casing large	6035 566
WG-510 BM	Wall casing large with	6038 533
	control module cut-out	

TopTronic® E sensors							
AF/2P/K	Outdoor sensor	2055	889				
TF/2P/5/6T	Immersion sensor, L = 5.0 m	2055	888				
ALF/2P/4/T	Contact sensor, L = 4.0 m	2056	775				
TF/1.1P/2.5S/6T	Collector sensor, L = 2.5 m	2056	776				

System housing	
System housing 182 mm	6038 551
System housing 254 mm	6038 552

Bivalent switch 2061 826

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Heating accessories

Part No.

Pressure expansion tanks

see "Various system components"

Safety set SG15-1"

641 184

Suitable up to max. 50 kW complete with safety valve (3 bar) Pressure gauge and automatic air vent with cut off valve

Connection: 1" internal thread

Connection set AS32-2/ H

6039 793

for compact mounting
of all required fittings
of a direct circuit
consisting of:
2 thermometer ball valves
Wall bracket included separately
Connection T-piece DN 32
in the return flow for connecting the
sludge separator CS 32 bottom and
the expansion tank on the side
on connection set
installation option
for an overflow valve
incl. non-return valve

Bypass valve DN 32 (11/4")

6014 849

for the installation in a HA group DN 32 Setting range 0.6-1.5 bar Max. flow rate: 1.5 m³/h with self-sealing screw connection for mounting between flow and return ball valve

Strainers

see "Various system components"

Sludge separator CS 25-1" with magnet

2063 735

for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %

Weight: 1.21 kg

Part No.

Sludge separator CS 32-11/4" with magnet

for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 11/4"
Drain made of brass: hose connection

Any inst. orientation -360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 %

Weight: 1.37 kg

2063 736

Strainer PN 16 B50-25-1"

Casing brass, PN 16 Connections Rp 1" Operating temperature max.: 110 °C Sieve made of stainless steel

Mesh size 0.5 mm

Strainer PN 16 B50-32-11/4"

Casing brass, PN 16 Connections Rp 11/4" Operation temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm 2046 980

2046 978

Intermediate tanks

see "Various system components"

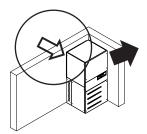
Domestic hot water accessories

Hot water set for Belaria® compact ICM (8,13) Consisting of:

Motor drive for built-in changeover valve and flexible connection hose 1"

L = 1.0 m, can be shortened on one side

6044 177



Screw-in electrical heating inset

for plants with buffer storage tank as emergency heating.

Heat output		Install. length	
Туре	[kW]	[mm]	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.9	620	6049 559
EP 7.5	7.5	850	6049 560

Accessories of the air guide

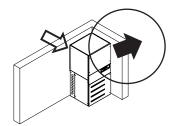
Part No.

"Standard" indoor installation Installation directly in the corner

Wall connection element WA-E01 for Belaria® comfort ICM for sealing the suction side directly on the wall black synthetic rubber 50 mm 6031 891

"Wall insulation" MI-E01 for Belaria® comfort ICM 4-piece, black synthetic rubber, steam-tight, 20 mm thick, depth 330 mm, self-adhesive

6031 933



Weatherproof grille WG-E01 for Belaria® comfort ICM blades for the suction aluminum 6031 935

Mesh grille MG-E01 for Belaria® comfort ICM

Accessories of the air guide

Part No.

"Standard" indoor installation Installation directly in the corner

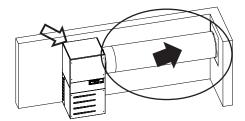
Outlet

Wall connection set WA-A01 for Belaria® comfort ICM consisting of: Wall connection element black synthetic rubber, 50 mm blow-out panel steel, powder-coated 6031 892

"Wall insulation" MI-A01

for Belaria® comfort ICM 4-piece, black synthetic rubber, steam-tight, 20 mm thick, depth 330 mm, self-adhesive. 6031 934

Weatherproof grille WG-A01 for Belaria® comfort ICM


for Belaria® comfort ICM blades for the blow-out aluminum

6031 936

Mesh grille MG-A01

for Belaria® comfort ICM

Accessories of the air guide

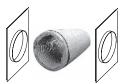
Part No.

"Flex" indoor installation

"Flex" installation for individual solutions

Intake

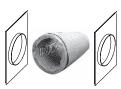
see "Standard" installation



Outlet on side via flexible hose

Air hose set LS560-2

6032 045


for Belaria® comfort ICM length 2 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. incl. clamps and connection plates; heat pump and wall side.

Air hose set LS560-3

6032 046

for Belaria® comfort ICM length 3 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. incl. clamps and connection plates; heat pump and wall side.

Air hose set LS560-5

6032 047

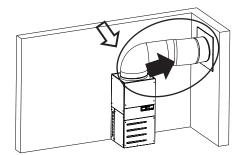
for Belaria® comfort ICM length 5 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. incl. clamps and connection plates; heat pump and wall side.

"Wall insulation" MI-A02

6032 563

for Belaria® comfort ICM 4-piece, black synthetic rubber, steam-tight, 20 mm thick, depth 330 mm, self-adhesive.

Weatherproof grille WG-A02


6031 937

for Belaria® comfort ICM with blades for blow-out opening with air hose in an air duct. Aluminum

Mesh grille MG-A02

for Belaria® comfort ICM for blow-out opening with air hose in an air duct

Accessories of the air guide

Part No.

"Flex" indoor installation

"Flex" installation for individual solutions

Intake

see "Standard" installation

Outlet on top via flexible hose

•

Air hose set LSO 560-2 for Belaria® comfort ICM length 2 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. Incl. clamps and connection plates; heat pump and wall side.


6046 564

Air hose set LSO 560-3

for Belaria® comfort ICM length 3 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. Incl. clamps and connection plates; heat pump and wall side.

6046 565

Air hose set LSO 560-5

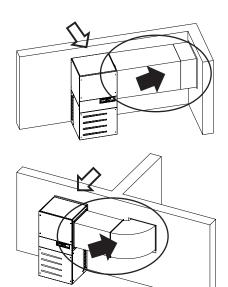
for Belaria® comfort ICM length 5 m (can be shortened), Ø 560 mm insulated hose, plastic foil outside. Insulation mineral wool, metal spiral inside with plastic foil. Incl. clamps and connection plates; heat pump and wall side.

6046 566

"Wall insulation" MI-A02

for Belaria® comfort ICM 4-piece, black synthetic rubber, steam-tight, 20 mm thick, depth 330 mm, self-adhesive. 6032 563

Weatherproof grille WG-A02


for Belaria® comfort ICM with blades for blow-out opening with air hose in an air duct. Aluminum

6031 937

Mesh grille MG-A02

for Belaria® comfort ICM for blow-out opening with air hose in an air duct

Accessories of the air guide

Part No.

"Duct" indoor installation

Straight or with elbow

Intake

see "Standard" installation

Blow off to the side via duct

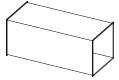
Wall fitting MS01

for Belaria® comfort ICM For connection of the air duct LKG 10 or LKG 15 on the wall air duct wall fitting insulated incl. installation material H x W: 680 x 650 mm

6040 349

Air duct elbow LKB90 - 90°

for Belaria® comfort ICM air duct 90° insulated incl. installation material H x W: 680 x 650 mm


6040 350

Air duct LKG10 - 1.0 m

for Belaria® comfort ICM air duct outlet side insulated, incl. installation material H x W x L: 680 x 650 mm x 1000 mm ducts can be shortened

6040 351

Air duct LKG15 - 1.5 m

for Belaria® comfort ICM air duct outlet side insulated, 6040 352

incl. installation material H x W x L: 680 x 650 mm x 1500 mm ducts can be shortened

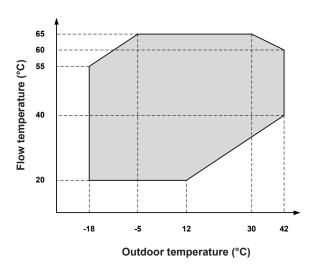
6040 363

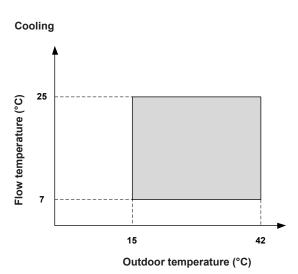
Weatherproof grille WG-MS01

for Belaria® comfort ICM Weatherproof grille outlet via air duct Anodized aluminium incl. installation material

Hoval Belaria® comfort ICM (8,13)

Туре		(8)	(13)
Energy efficiency class of the compound system with control Coefficient of performance moderate climate 35 °C/55 °C	35 °C / 55 °C	A+++/A++	A+++/A++
	SCOP	4.5/3.3	4.6/3.5
Performance data (heating) in acc. with EN 14511 Heat output A2W35 Power consumption A2W35 Coefficient of performance A2W35	kW	3.9	7.1
	kW	0.9	1.7
	COP	4.3	4.1
Heat output A7W35Power consumption A7W35Coefficient of performance A7W35	kW	4.5	8.3
	kW	0.9	1.7
	COP	5.1	4.8
Heat output A-7W35Power consumption A-7W35Coefficient of performance A-7W35	kW	2.8	5.5
	kW	0.9	1.7
	COP	3.2	3.3
Performance data (cooling) in acc. with EN 14511 Cooling capacity A35W18 Power consumption A35W18 Coefficient of performance A35W18 Cooling capacity A35W7 Power consumption A35W7	kW	5.1	9.5
	kW	1.1	2.3
	EER	4.5	4.1
	kW	3.4	6.8
	kW	1.1	2.2
 Coefficient of performance A35W7 Sound data Sound power level EN 12102 outdoor ¹⁾ Sound pressure level at 5 m Sound pressure level at 10 m Sound power level EN 12102 indoor 	dB (A)	2.7	3.0
	dB (A)	44	49
	dB (A)	25	30
	dB (A)	19	24
	dB (A)	44	42
 Hydraulic data Max. flow temperature Max. flow of heating water with A7/W35, 5K ΔΤ Nominal flow rate heating water 5K ΔΤ Residual overpressure of heating pump at nominal output Max. operating pressure on the heating side Flow/return connection heating Built-in condensate drain (hose connection) Built-in fan Air quantity at max. speed A7W35 Residual pressure at maximum rpm 	°C m³/h m³/h kPa bar R mm m³/h	65 1.5 0.8 49 3 1" 35 Centrifugal fan 2200 150	65 2.5 1.4 68 3 1" 35 Centrifugal fan 3900 110
Cooling technical data Refrigerant Compressor/stages Refrigerant fill volume Compressor oil fill volume (FV50S)	kg I	R410A Inverter/1 3.2 0.35	R410A Inverter/1 6.2 1.9
Electrical data • Electrical connection compressor • Electrical connection immersion heater • Control electrical connection • Max. compressor operating current • Max. immersion heater operating current • Max. fan operating current • Max. fan power consumption • Main current fuse • Control current fuse • Immersion heater fuse	V / Hz V / Hz V / Hz A A A W A A	1~230/50 3~400/50 1~230/50 15.8 13 0,24 56 C 16 B 13 B 13	3~400/50 3~400/50 1~230/50 15.8 13 0,5 115 C 20 B 13 B 13
Dimensions / weight Dimensions (H x W x D) Weight Minimum sizes of installation room	mm	1830 x 910 x 780	1830 x 910 x 780
	kg	280	298
	m³	7.3	14.1


¹⁾ The sound power levels apply in whisper mode. Values increase by +4 dB(A) in normal operation.


Using a residual current circuit breaker RCCB type B. $I\Delta n \ge 300$ mA is recommended. Country-specific regulations must be observed.

Graphs of operating range

Belaria® comfort ICM (8,13)

Heating and how water

Hoval Belaria® comfort ICM (8,13)

Sound pressure level - sound power level

The **sound pressure level** is dependent on the **place of measure-ment** and the installation environment within a sound field and describes the sound intensity at this point. In contrast, the **sound power level** is a characteristic of the sound source and therefore does not change with distance; it describes the totality of sound power of the relevant source radiated in all directions.

Indoor unit

The effective sound pressure in the installation room depends on various factors such as room size, absorption capacity, reflection, free sound propagation, etc.

For this reason, it is important to ensure that where possible, the boiler room is outside noise-sensitive areas of the building and equipped with a sound-absorbing door.

Type (indications for equipment room)		(8)	(13)
Standard installation			
Sound power level	dB (A)	44	42

Outlet and intake directly through the wall

The sound pressure levels indicated below apply if the air intake and outlet are positioned across a corner from each other on a straight wall with weather protection grille without roofing.

Type (indications for outside)	(8)	(13)
• Sound power level ¹ dB (A)	44	49
Sound pressure level at 5 m ¹ dB (A)	25	30
Sound pressure level at 10 m ¹ dB (A)	19	24

¹ The sound power levels apply in whisper mode. Values increase by +4 dB(A) in normal operation.

Reduced sound levels (outside) as a result of the installation situation

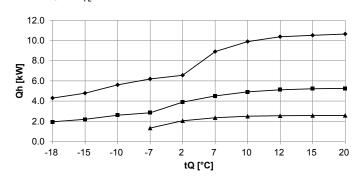
The following reductions in the sound levels can be assumed as a result of the installation of the following components in the air duct:

•	Light well from a depth of 1.5 m:	- 4 dB(A)
•	Air hose sound-insulated on the inside, L < 2 m:	- 4 dB(A)

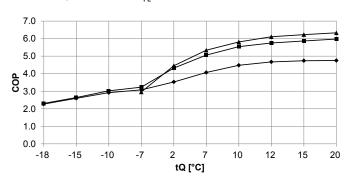
Air hose sound-insulated on the inside, L > 2 m:

Structure-borne sound

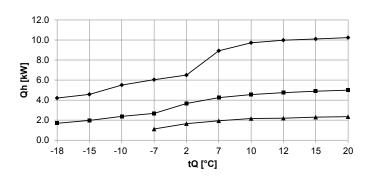
To prevent the transmission of structure-borne sound, all connections must be fitted with compensators or vibration dampers.

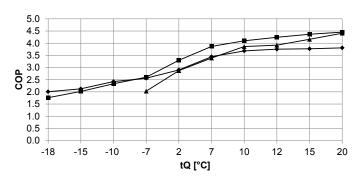


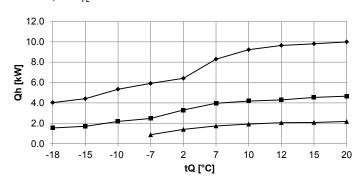
Performance data - heating

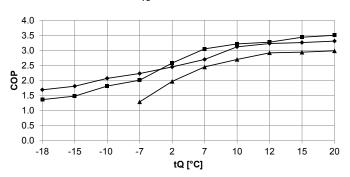

Maximum heat output allowing for defrosting losses

Hoval Belaria® comfort ICM (8)


Heat output - t_{FL} 35 °C


Coefficient of performance - $t_{\rm FL}$ 35 °C


Heat output - $t_{_{\rm FL}}$ 45 °C


Coefficient of performance - $\rm t_{_{FL}}$ 45 $^{\circ}C$

Heat output - t_{FL} 55 °C

Coefficient of performance - $t_{_{\rm FL}}$ 55 °C

Observe daily power interruptions! see project planning

tFL = Heating flow temperature (°C)

Q = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

→ Maximum output→ Nominal output→ Minimum output

Performance data - heating

Hoval Belaria® comfort ICM (8)

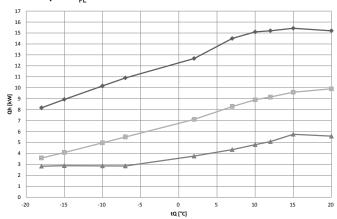
Data according to EN 14511

			aximum out	put		ominal outp	ut		inimum out	out
tFL °C	tQ °C	Qh kW	P kW	СОР	Qh kW	P kW	СОР	Qh kW	P kW	СОР
										COP
	-18	4.30	1.84	2.27	1.94	0.84	2.31	-	-	-
	-15	4.78	1.84	2.60	2.19	0.83	2.64	-	-	-
	-10	5.61	1.92	2.92	2.60	0.86	3.02	-	- 0.47	-
	-7	6.19	1.92	3.08	2.84	0.86	3.23	1.33	0.47	2.96
35	2	6.56	1.87	3.53	3.89	0.90	4.32	2.05	0.46	4.46
	7	8.91 9.90	2.10 2.21	4.07	4.51	0.87 0.89	5.06 5.55	2.35 2.50	0.44	5.34
	10			4.48	4.91				0.43	5.81
	12	10.38	2.22	4.68	5.12	0.89	5.75	2.55	0.44	6.11
	15	10.52	2.24	4.74	5.22	0.89	5.87	2.57	0.43	6.23
	20 -18	10.65	2.24	4.75	5.26	0.88	5.98 1.76	2.58	0.43	6.33
		4.21	2.10	2.00	1.69	0.96				
	-15	4.57	2.15	2.13	1.98	0.98	2.02	-	-	-
	-10	5.50	2.27	2.42	2.38	1.02	2.33	-	- 0.57	-
	-7	6.04	2.36	2.56	2.68	1.03	2.60	1.12	0.57	2.03
45	2	6.50	2.24	2.90	3.66	1.11	3.30	1.65	0.58	2.87
	7	8.92	2.59	3.44	4.25	1.10	3.86	1.94	0.57	3.39
	10	9.72	2.64	3.68	4.55	1.11	4.10	2.17	0.58	3.86
	12	9.98	2.66	3.75	4.75	1.12	4.24	2.20	0.56	3.92
	15	10.10	2.68	3.77	4.89	1.12	4.37	2.30	0.58	4.16
	20	10.24	2.69	3.81	4.99	1.12	4.46	2.35	0.57	4.41
	-18	3.37	2.28	1.48	1.52	1.04	1.49	-	-	-
	-15	3.89	2.37	1.64	1.78	1.07	1.66	-	-	-
	-10	4.88	2.52	1.93	2.26	1.13	2.04	-	-	-
	-7	5.58	2.53	2.21	2.56	1.13	2.26	1.20	0.62	1.94
50	2	5.90	2.44	2.42	3.50	1.17	2.90	1.84	0.60	3.07
	7	7.92	2.86	2.77	4.01	1.19	3.26	2.09	0.60	3.48
	10	8.67	2.97	2.92	4.30	1.19	3.48	2.19	0.58	3.79
	12	8.98	2.96	3.03	4.43	1.19	3.63	2.21	0.59	3.76
	15	9.43	3.02	3.12	4.68	1.20	3.90	2.30	0.58	3.97
	20	9.72	3.01	3.23	4.80	1.18	4.06	2.35	0.58	4.08
	-18	4.03	2.39	1.69	1.54	1.13	1.36	-	-	-
	-15	4.41	2.45	1.81	1.70	1.15	1.48	-	-	-
	-10	5.34	2.59	2.07	2.18	1.20	1.82	-	-	-
	-7	5.91	2.66	2.23	2.47	1.23	2.01	0.88	0.69	1.29
55	2	6.41	2.63	2.45	3.30	1.28	2.58	1.40	0.72	1.97
	7	8.29	3.07	2.70	3.96	1.27	3.05	1.74	0.72	2.45
	10	9.22	2.97	3.12	4.18	1.30	3.22	1.92	0.72	2.70
	12	9.64	3.00	3.23	4.29	1.31	3.27	2.06	0.72	2.92
	15 20	9.80	3.01	3.26	4.54	1.32	3.44	2.08	0.72	2.94
	20 -7	9.99 5.19	3.03 2.57	3.31 2.02	4.66 2.24	1.33 1.35	3.50 1.66	2.18	0.73	2.99
	- <i>1</i> 2	5.19	2.5 <i>1</i> 2.54	2.02	3.10	1.35	2.15	- 1.32	- 0.81	- 1.62
		5.63 7.28		2.22		1.44	2.15			
60	7 10		2.97	2.45 2.82	3.64	1.45	2.51	1.60	0.82	1.95
60	10	8.10	2.87		3.95	1.43	2.76	1.81	0.79	2.29
	12 15	8.47	2.90	2.92	4.15			1.99	0.79	2.52
		8.60	2.89	2.98	4.36	1.44	3.03	2.00	0.79	2.54
	20	8.79	2.91	3.02	4.47	1.44	3.10	2.09	0.79	2.65

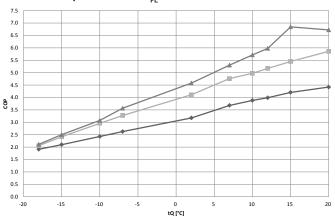
tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

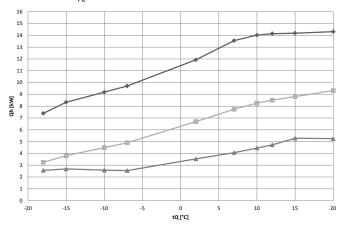
Qh = Heat output (kW), measured in accordance with standard EN 14511
P = Power consumption of the overall unit (kW) incl. high-efficiency pump, measured in accordance with EN 14511

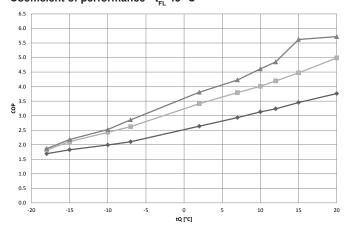

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

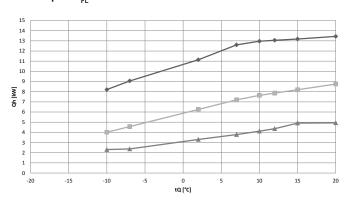
Performance data - heating

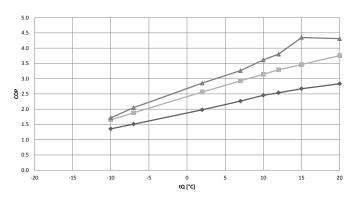

Maximum heat output allowing for defrosting losses

Hoval Belaria® comfort ICM (13)


Heat output - t_{FL} 35 °C


Coefficient of performance - $t_{\rm FL}$ 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - $t_{_{\rm FL}}$ 45 °C

Heat output - t_{FL} 55 °C

Coefficient of performance - $t_{_{\rm FL}}$ 55 °C

Observe daily power interruptions! see project planning

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

→ Minimum output

Performance data - heating

Hoval Belaria® comfort ICM (13)

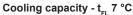
Data according to EN 14511

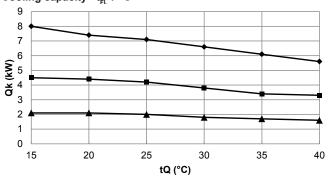
-18 8.2 4.3 1.9 3.6 1.7 2.1 2.8 1.3 2.1 -15 8.9 4.3 2.1 4.1 1.7 2.4 2.9 1.2 2.5 -10 10.2 4.2 2.4 5.0 1.7 3.0 2.9 0.9 3.1			Ma	ximum out	put	N	ominal outp	ut	Mi	inimum out	out
-18 8.2 4.3 1.9 3.6 1.7 2.1 2.8 1.3 2.1 -15 8.9 4.3 2.1 4.1 1.7 2.4 2.9 1.2 2.5 -10 10.2 4.2 2.4 5.0 1.7 3.0 2.9 0.9 3.1 -7 10.9 4.2 2.6 5.5 1.7 3.3 2.9 0.8 3.6 2 12.7 4.0 3.2 7.1 1.7 4.1 3.8 0.8 4.6 10 15.1 3.9 3.7 8.3 1.7 4.8 4.4 0.8 5.3 10 15.1 3.9 3.9 3.7 8.3 1.7 4.8 4.4 0.8 5.3 10 15.1 3.9 3.9 4.0 9.2 1.8 5.2 5.1 0.9 6.0 15 15.4 3.7 4.2 9.6 1.8 5.5 5.8 0.8 6.9 20 15.2 3.4 4.4 9.9 1.7 5.9 5.6 0.8 6.7 -18 7.4 4.4 1.7 3.2 1.8 1.8 2.6 1.4 1.9 -15 8.3 4.6 1.8 3.8 1.8 2.1 2.7 1.2 2.2 -10 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 2.9 4.5 1.0 1.0 14.0 4.5 3.1 8.3 2.1 4.0 4.5 5.3 0.9 5.6 2.0 4.5 1.9 2.4 4.0 4.5 1.0 4.6 1.2 14.1 4.4 3.2 8.5 2.0 4.5 5.3 0.9 5.6 2.0 4.5 5.3 0.9 5.6 2.0 14.3 3.8 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.7 1.8 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 5.3 0.9 5.0 5.3 0.9 5.0 5.3 0.9 5.0 5.3 0.9 5.0 5.3 0.9 5.0 5.3 0.9 5.0 5											
-15	°C	°C	kW	kW	COP	kW	kW	COP	kW	kW	COP
-10		-18	8.2	4.3	1.9	3.6	1.7	2.1	2.8	1.3	2.1
35		-15	8.9	4.3	2.1	4.1	1.7	2.4	2.9	1.2	2.5
35		-10	10.2	4.2	2.4	5.0	1.7	3.0	2.9	0.9	3.1
35 7 14.5 3.9 3.7 8.3 1.7 4.8 4.4 0.8 5.3 10 15.1 3.9 3.9 8.9 1.8 5.0 4.8 0.8 5.7 12 15.2 3.8 4.0 9.2 1.8 5.2 5.1 0.9 6.0 15 15.4 3.7 4.2 9.6 1.8 5.5 5.8 0.8 6.9 20 15.2 3.4 4.4 9.9 1.7 5.9 5.6 0.8 6.7 -18 7.4 4.4 1.7 3.2 1.8 1.8 2.6 1.4 1.9 -15 8.3 4.6 1.8 3.8 1.8 2.1 2.7 1.2 2.2 -10 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 </td <td></td> <td></td> <td>10.9</td> <td></td> <td>2.6</td> <td>5.5</td> <td>1.7</td> <td></td> <td></td> <td>8.0</td> <td>3.6</td>			10.9		2.6	5.5	1.7			8.0	3.6
10 15.1 3.9 3.9 8.9 1.8 5.0 4.8 0.8 5.3 1.7 12 15.2 3.8 4.0 9.2 1.8 5.2 5.1 0.9 6.0 15 15.4 3.7 4.2 9.6 1.8 5.5 5.8 0.8 6.9 20 15.2 3.4 4.4 9.9 1.7 5.9 5.6 0.8 6.7 1.8 7.4 4.4 1.7 3.2 1.8 1.8 2.6 1.4 1.9 1.5 8.3 4.6 1.8 3.8 1.8 2.1 2.7 1.2 2.2 1.0 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 1.7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 2.9 1.9 2.4 1.9 2.6 2.5 0.9 2.9 1.9 2.9 1.9 2.6 2.5 0.9 2.9 1.9 1.9 2.6 2.5 0.9 3.8 1.8 1.9 1.9 2.6 2.5 0.9 3.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	35									8.0	
12 15.2 3.8 4.0 9.2 1.8 5.2 5.1 0.9 6.0 15 15.4 3.7 4.2 9.6 1.8 5.5 5.8 0.8 6.9 20 15.2 3.4 4.4 9.9 1.7 5.9 5.6 0.8 6.7 -18 7.4 4.4 1.7 3.2 1.8 1.8 2.6 1.4 1.9 -15 8.3 4.6 1.8 3.8 1.8 2.1 2.7 1.2 2.2 -10 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2	33					8.3					
15											
20 15.2 3.4 4.4 9.9 1.7 5.9 5.6 0.8 6.7 -18 7.4 4.4 1.7 3.2 1.8 1.8 2.6 1.4 1.9 -15 8.3 4.6 1.8 3.8 1.8 2.1 2.7 1.2 2.2 -10 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 .7 13.6 4.6 2.9 7.7 2.0 3.8 4.1 1.0 4.2 .0 14.0 4.5 3.1 8.3 2.1 4.0 4.5 1.0 4.6 .10 14.0 4.5 3.1 8.3 2.1 4.0 4.5 1.0 4.6 .12 14.1 4.4 3.2 8.5 2.0 4.2 4.7 1.0 4											
-18											
45											
-10 9.2 4.6 2.0 4.5 1.9 2.4 2.6 1.0 2.5 -7 9.7 4.6 2.1 4.9 1.9 2.6 2.5 0.9 2.9 2 11.9 4.5 2.6 6.7 2.0 3.4 3.5 0.9 3.8 7 13.6 4.6 2.9 7.7 2.0 3.8 4.1 1.0 4.2 10 14.0 4.5 3.1 8.3 2.1 4.0 4.5 1.0 4.6 12 14.1 4.4 3.2 8.5 2.0 4.2 4.7 1.0 4.9 15 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 20 14.3 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.7 -18											
45											
45											
7 13.6 4.6 2.9 7.7 2.0 3.8 4.1 1.0 4.2 10 14.0 4.5 3.1 8.3 2.1 4.0 4.5 1.0 4.6 12 14.1 4.4 3.2 8.5 2.0 4.2 4.7 1.0 4.9 15 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 20 14.3 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.7 -18											
7 13.6 4.6 2.9 7.7 2.0 3.8 4.1 1.0 4.2 10 14.0 4.5 3.1 8.3 2.1 4.0 4.5 1.0 4.6 12 14.1 4.4 3.2 8.5 2.0 4.2 4.7 1.0 4.9 15 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 20 14.3 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.7 -18	45										
12 14.1 4.4 3.2 8.5 2.0 4.2 4.7 1.0 4.9 15 14.2 4.1 3.5 8.8 2.0 4.5 5.3 0.9 5.6 20 14.3 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.7 -18 - - - - - - - - - - - -15 - - - - - - - - - - - -10 8.2 6.1 1.4 4.0 2.4 1.7 2.3 1.4 1.7 -7 9.1 6.0 1.5 4.7 2.4 2.0 2.4 1.2 2.1 55 7 12.6 5.6 2.3 7.2 2.5 2.9 3.8 1.2 3.3 10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 1.1 3.6											
15											
20 14.3 3.8 3.8 9.3 1.9 5.0 5.3 0.9 5.7 -18 -											
-18											
-15											
-10 8.2 6.1 1.4 4.0 2.4 1.7 2.3 1.4 1.7 -7 9.1 6.0 1.5 4.7 2.4 2.0 2.4 1.2 2.1 2 11.1 5.6 2.0 6.3 2.4 2.6 3.3 1.2 2.9 7 12.6 5.6 2.3 7.2 2.5 2.9 3.8 1.2 3.3 10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 3.6											
-7 9.1 6.0 1.5 4.7 2.4 2.0 2.4 1.2 2.1 2 11.1 5.6 2.0 6.3 2.4 2.6 3.3 1.2 2.9 7 12.6 5.6 2.3 7.2 2.5 2.9 3.8 1.2 3.3 10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 3.6											
55 2 11.1 5.6 2.0 6.3 2.4 2.6 3.3 1.2 2.9 7 12.6 5.6 2.3 7.2 2.5 2.9 3.8 1.2 3.3 10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 3.6											
7 12.6 5.6 2.3 7.2 2.5 2.9 3.8 1.2 3.3 10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 3.6											
10 13.0 5.3 2.5 7.6 2.4 3.1 4.1 1.1 3.6	55										
											3.3
15 13.2 4.9 2.7 8.2 2.4 3.5 4.9 1.1 4.4 20 13.4 4.7 2.8 8.8 2.3 3.8 4.9 1.1 4.3											
-18			10.4								
-15			-	-	-				-	-	-
-10			_	_	_		_	_	_	_	_
-7			_	_	_		_	_	_	_	_
2 106 62 17 60 27 22 22 12 25			10.6		1 7			22	3 2	1.3	2.5
60 7 11.9 6.1 2.0 6.8 2.7 2.5 3.6 1.3 2.8	60	7									
10 12.4 5.9 2.1 7.3 2.7 2.7 3.9 1.3 3.1											
											3.3
15 12.7 5.5 2.3 7.9 2.7 3.0 4.7 1.3 3.8											
20 13.1 5.3 2.5 8.5 2.6 3.3 4.8 1.3 3.7											

tFL = Heating flow temperature (°C)

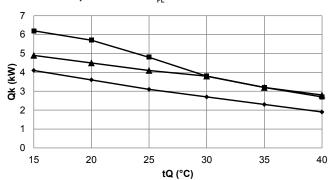
tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511

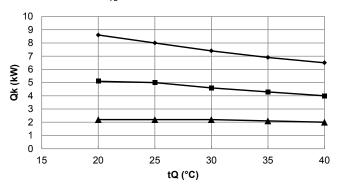

P = Power consumption of the overall unit (kW) incl. high-efficiency pump, measured in accordance with EN 14511

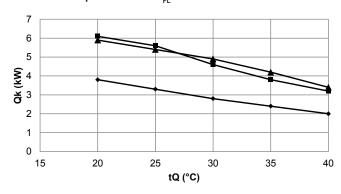

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

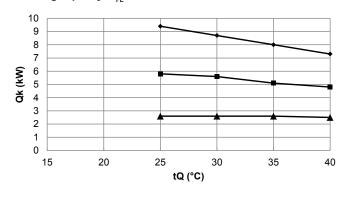
Performance data - cooling

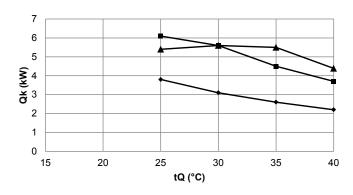

Maximum cooling capacity

Hoval Belaria® comfort ICM (8)




Coefficient of performance - $t_{_{FL}}$ 7 °C


Cooling capacity - $t_{_{FL}}$ 12 °C


Coefficient of performance - $\rm t_{FL}$ 12 °C

Cooling capacity - t_{FL} 18 °C

Coefficient of performance - $\rm t_{FL}$ 18 °C

tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

→ Maximum output
→ Nominal output
→ Minimum output

Performance data - cooling

Hoval Belaria® comfort ICM (8)

Data according to EN 14511

	Maximum output				Nominal output			Minimum output		
tFL	tQ	Qk	Р		Qk	P		Qk	Р	
°C	°C	kW	kW	EER	kW	kW	EER	kW	kW	EER
	20	7.4	2.1	3.6	4.4	0.8	5.7	2.1	0.5	4.5
	25	7.1	2.3	3.1	4.2	0.9	4.8	2	0.5	4.1
7	30	6.6	2.5	2.7	3.8	1	3.8	1.8	0.5	3.8
	35	6.1	2.7	2.3	3.4	1.1	3.2	1.7	0.5	3.2
	40	5.6	2.9	1.9	3.3	1.2	2.7	1.6	0.6	2.8
	15	-	-	-	-	-	-	-	-	-
	20	8.6	2.3	3.8	5.1	8.0	6.1	2.2	8.0	5.9
12	25	8	2.4	3.3	5	0.9	5.6	2.2	0.9	5.4
	30	7.4	2.6	2.8	4.6	1	4.6	2.2	1	4.9
	35	6.9	2.9	2.4	4.3	1.1	3.8	2.1	1.1	4.2
	40	6.5	6.2	2	4	1.3	3.2	2	1.2	3.4
	15	-	-	-	-	-	-	-	-	-
	20	-	-	-	-	-	-	-	-	-
40	25	9.4	2.5	3.8	5.8	0.9	6.1	2.6	0.5	5.4
18	30	8.7	2.9	3.1	5.6	1	5.6	2.6	0.5	5.6
	35	8	3.1	2.6	5.1	1.1	4.5	2.6	0.5	5.5
	40	7.3	3.4	2.2	4.8	1.3	3.7	2.5	0.6	4.39

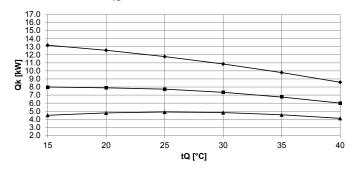
tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)

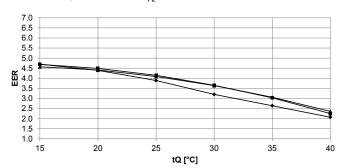
Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

P = Power consumption of the overall unit (kW) incl. high-efficiency pump, measured in accordance with EN 14511

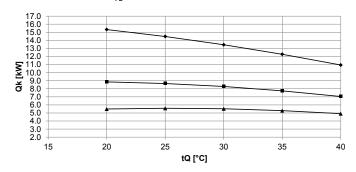
EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

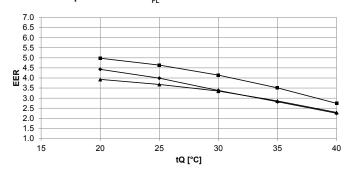


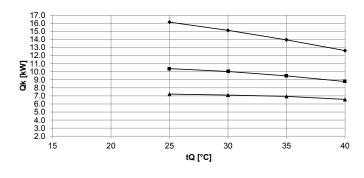
Performance data - cooling

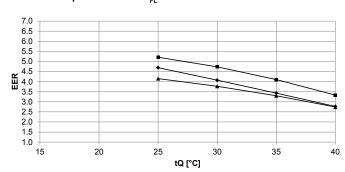

Maximum cooling capacity

Hoval Belaria® comfort ICM (13)


Cooling capacity - $t_{_{\rm FL}}$ 7 °C


Coefficient of performance - $t_{_{\rm FL}}$ 7 °C


Cooling capacity - $t_{\rm FL}$ 12 °C


Coefficient of performance - $\rm t_{_{FL}}$ 12 °C

Cooling capacity - t_{FL} 18 °C

Coefficient of performance - t_{FI} 18 °C

tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

Minimum output

Performance data - cooling

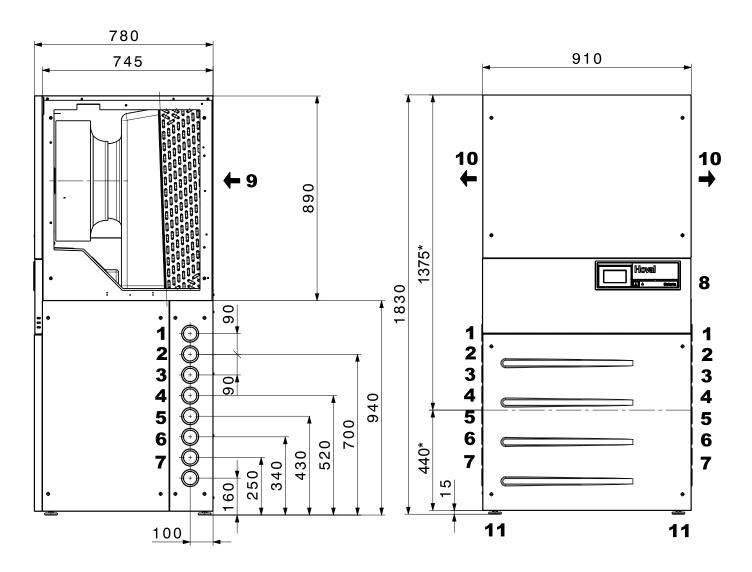
Hoval Belaria® comfort ICM (13)

Data according to EN 14511

		Ma	aximum out	put	N	ominal outp	out	M	inimum out	out
tFL	tQ	Qk	Р		Qk	P		Qk	P	
°C	°C	kW	kW	EER	kW	kW	EER	kW	kW	EER
	15	13.2	2.8	4.7	8.0	1.7	4.7	4.5	1.0	4.6
	20	12.6	2.9	4.4	7.9	1.8	4.5	4.8	1.1	4.4
7	25	11.8	3.0	3.9	7.7	1.9	4.2	4.9	1.2	4.1
,	30	10.9	3.4	3.2	7.3	2.0	3.7	4.8	1.3	3.6
	35	9.8	3.7	2.6	6.8	2.2	3.0	4.6	1.5	3.1
	40	8.6	4.2	2.1	6.0	2.7	2.3	4.1	1.7	2.4
	15	-	-	-	-	-	-	-	-	-
	20	15.3	3.5	4.4	8.9	1.8	5.0	5.5	1.4	3.9
10	25	14.5	3.6	4.0	8.7	1.9	4.6	5.6	1.5	3.7
12	30	13.5	4.0	3.4	8.3	2.0	4.1	5.5	1.7	3.4
	35	12.3	4.4	2.8	7.7	2.2	3.5	5.3	1.9	2.9
	40	10.9	4.9	2.3	7.0	2.6	2.7	4.9	2.1	2.3
	15	-	-	-	-	-	-	-	-	-
	20	-	-	-	-	-	-	-	-	-
10	25	16.1	3.5	4.7	10.4	2.0	5.2	7.2	1.7	4.2
18	30	15.1	3.7	4.1	10.0	2.1	4.7	7.1	1.9	3.8
	35	13.9	4.1	3.4	9.5	2.3	4.1	6.9	2.1	3.3
	40	12.6	4.6	2.8	8.8	2.6	3.3	6.6	2.4	2.7

tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)


Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

P = Power consumption of the overall unit (kW) incl. high-efficiency pump, measured in accordance with EN 14511

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

Hoval Belaria® comfort ICM (8,13)

(Dimensions in mm)

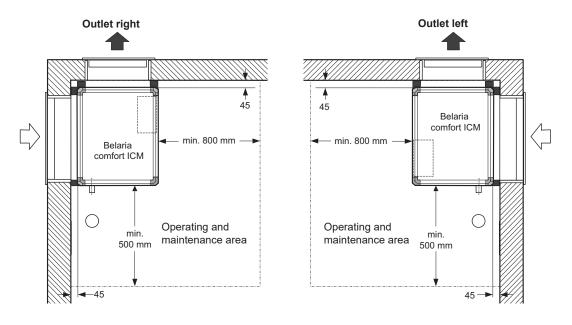
Connections optionally on the left or right Conversion on site

- 1 DHW flow R 1"
- 2 Heating flow R1"
- 3 Condensate drain
- 4 Heating return R1"
- 5 Main electrical connection Electrical heating insert
- 6 Control current connection
- 7 Free
- 8 Control panel
- 9 Air intake (evaporator inlet)
- 10 Air outlet opening
- 11 Adjustable feet

* Dimensions of the divided version of the Belaria® comfort ICM (8,13)

Space requirement "standard" installation with wall insulation MI

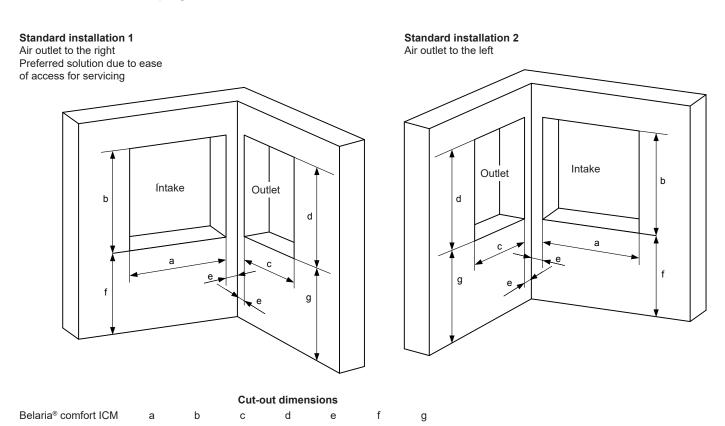
"Standard" installation with wall insulation MI


Installation in the corner of the boiler room, directly on the outside wall, with wall connection element and weatherproof grille. Intake at the back, outlet to the right (preferred) or to the left. Water connections on the opposite side.

Cut-outs

The cut-outs must be created professionally and without cold bridges! The dimensions of the cut-outs are "clear dimensions" measured from the finished floor!

Air ducts


Concrete ducts have unfavourable acoustic properties and often magnify sound emissions. It is therefore advisable to equip the air ducts with a sound-absorbing, weatherproof lining. The air ducts must be drained.

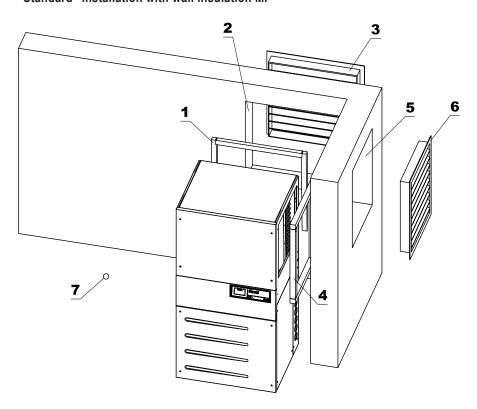
Cut-out dimensions

"Standard" installations - heat pump in the corner, without air ducts, with wall insulation MI (Dimensions in mm)

- The cut-outs must be created professionally.
- Cut-out dimensions from top edge of finished floor.

950

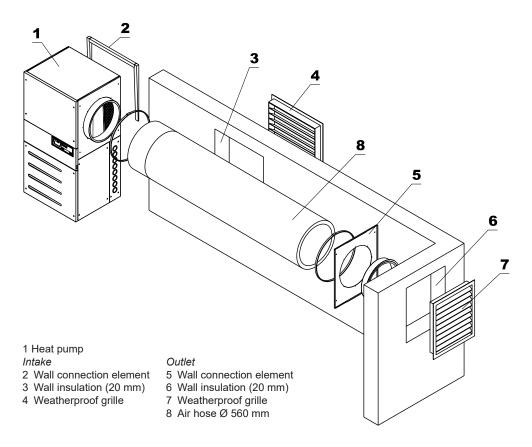
Subject to modifications, 1,4,2019


855

680

(8,13)

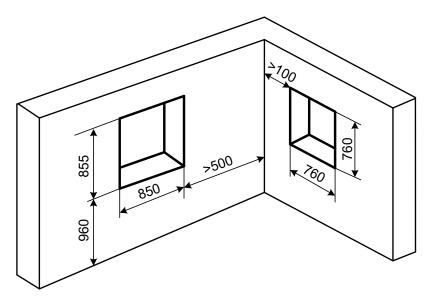
Space requirement installation with wall insulation MI


"Standard" installation with wall insulation MI

Ве	laria® comfort ICM	Application	Accessories Type	Part No.
He	at pump	Indoor installation		
1	Wall connection element	Intake	WA-E01	6031 891
2	Wall insulation	Intake	MI-E01	6031 933
3	Weatherproof grille	Intake	WG-E01	6031 935
4	Wall connection set	Outlet	WA-A01	6031 892
5	Wall insulation	Outlet	MI-A01	6031 934
6	Weatherproof grille	Outlet	WG-A01	6031 936
7	Condensate drain			

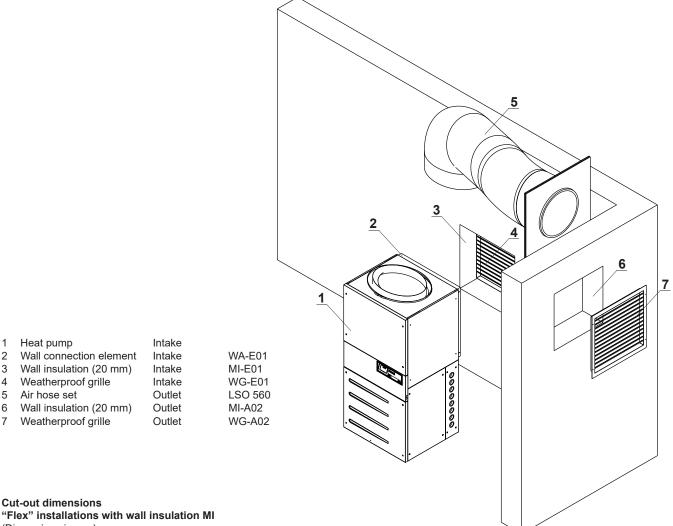
Space requirement "flex" installation

"Flex" installation with wall insulation MI



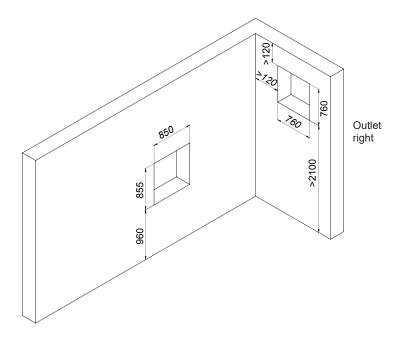
Cut-out dimensions

"Flex" installations with wall insulation MI

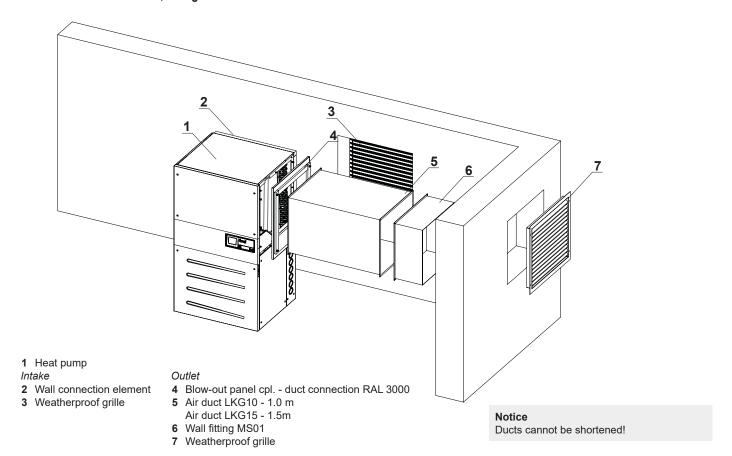

(Dimensions in mm)

- The cut-outs must be created professionally.
 Cut-out dimensions from top edge of finished floor.

Space requirement "flex" installation


"Flex" installation with wall insulation MI, blow out at top through flexible hose

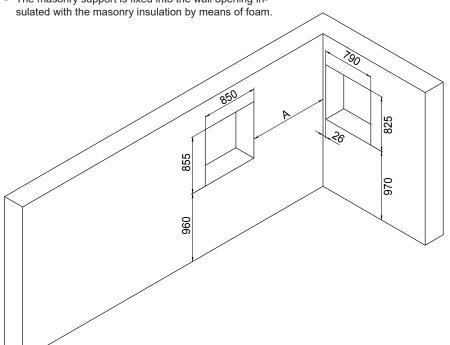
6


(Dimensions in mm)

- The cut-outs must be created professionally.
 Cut-out dimensions from top edge of finished floor.

Space requirement "duct" indoor installation

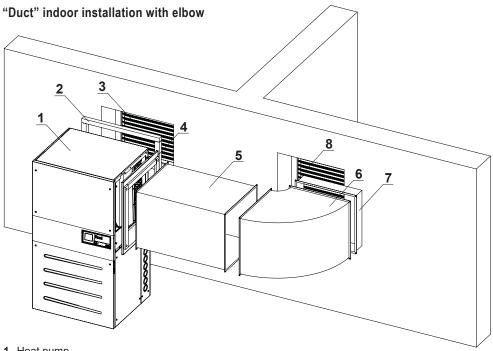
"Duct" indoor installation, straight



Cut-out dimensions

"Duct" indoor installation, straight

(Dimensions in mm)


- The cut-outs must be created professionally.
- The masonry support is fixed into the wall opening in-

A depends on the selection of the air duct:

Length of air duct	Α	
1000 1500	1130 1630	

Space requirement "duct" indoor installation

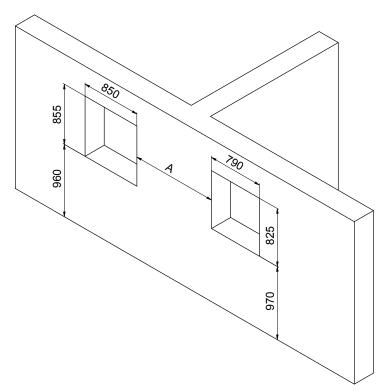
1 Heat pump *Intake*

- 2 Wall connection element
- 3 Weatherproof grille

Outlet

- 4 Blow-out panel cpl. duct connection RAL 3000
- 5 Air duct LKG10 1.0 m Air duct LKG15 - 1.5m
- 6 Air duct elbow LKB90 90°
- 7 Wall fitting MS01
- 8 Weatherproof grille

Notices


- · Ducts cannot be shortened!
- In order to prevent an air short circuit, the partition must be positioned between the suction and exhaust opening.

Cut-out dimensions

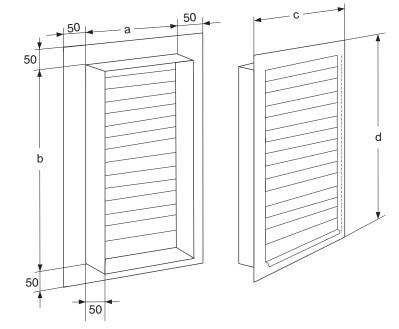
"Duct" indoor installation with elbow

(Dimensions in mm)

- The cut-outs must be created professionally.
- The masonry support is fixed into the wall opening insulated with the masonry insulation by means of foam.

A depends on the selection of the air duct:

Length of air duct A 1000 1126 1500 1626


Dimensions, weatherproof grille

(Dimensions in mm)

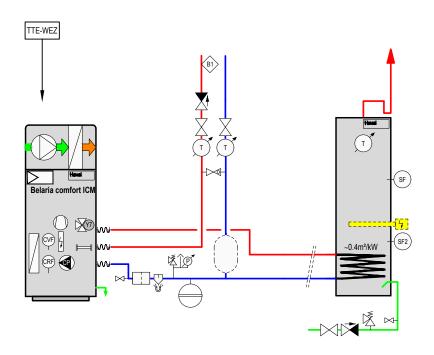
Weatherproof grille made of aluminium with mesh grille.

For the openings with Hoval wall insolation type MI -E01 (suction) or MI -A01, MI -A02 (exhaust).

If the thermal insulation for the wall openings is provided on-site, it must be 20 mm thick!

Weatherproof grille	Belaria [®] comfort ICM	Application				
Туре	Туре	for	а	b	С	d
WG-E01	8,13	Intake	810	796	890	896
WG-A01	8,13	Outlet	640	746	720	846
WG-A02	8,13	Outlet Flex	720	696	800	796
WG-MS01	8,13	Outlet duct	750	746	830	846

■ Examples


Belaria® comfort ICM (8,13)

Air/water heat pump with

- Calorifier
- 1 direct circuit

Hydraulic schematic BBADE030

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TTE-WEZ TopTronic® E basic module heat generator

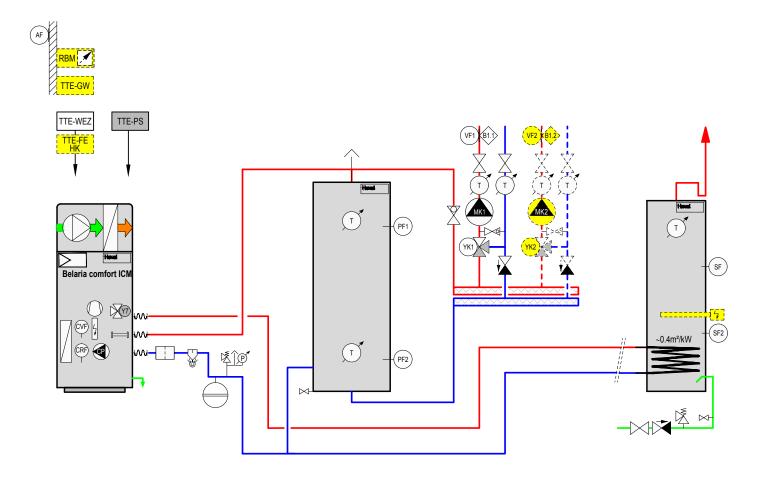
AF SF Outdoor sensor Calorifier sensor SF2 Calorifier sensor 2

Flow temperature monitor (if required)

Option

TopTronic® E room control module TopTronic® E Gateway RBM

TTE-GW


■ Examples

Belaria® comfort ICM (8,13)

Air/water heat pump with

- energy buffer storage tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematic BBADE040

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TTE-WEZ TopTronic® E basic module heat generator (installed										
	4/	(inetalla	generator	hoat	modula	hacic	onic® F	TonT	TTE-WEZ	

TTE-PS TopTronic® E buffer module VF1 Flow temperature sensor 1

B1.1 Flow temperature monitor (if required)

MK1 Pump, mixer circuit 1 YK1 Actuator, mixer 1 AF Outdoor sensor SF Calorifier sensor Calorifier sensor 2 SF2 PF1 Buffer sensor 1 PF 2 Buffer sensor 2

Option

RBM TTE-GW TopTronic® E room control module TopTronic® E Gateway

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 Flow temperature sensor 2

Flow temperature monitor (if required) B1.2

Pump, mixer circuit 2 Actuator, mixer 2 MC2 YK2

Description

Hoval Belaria® twin I Hoval Belaria® twin IR Air/water heat pump

- Air/water heat pump in compact design for indoor installation
- Sturdy housing without cold bridges with steel/plastic section frame and plastic corner connections. Removable side walls (panels) made of power-coated Zincor sheet steel with optimum heat and noise insulation Colour light grey (RAL 7035)
- Two suction gas cooled scroll compressors
- With large-area aluminium/copper ribbed pipe evaporator and plate-type condenser made from stainless steel/copper
- · Speed-controlled centrifugal fan
- Refrigerant circuit with electronic expansion valve, filter dryer with sight glass, suctiongas heat exchanger, manifold, high and low-pressure pressure controllers
- Two electronic starting current limiters with integrated rotary field/phase monitoring
- With efficient defrosting control via inversion of the refrigeration circuit
- Filled with refrigerant R 407C, wired up internally ready for connection
- Hoval Belaria® twin IR with additional cooling function
- Electrical box and terminal box with built-in TopTronic® E controller (integrated at bottom right on front). With monitoring and fault signalling function.
- Flexible hoses:
 - type (15): 1" length 1.0 m
- type (20): 11/4" length 1.5 m
- type (25,30): 11/2" length 1.5 m

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- · Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- Fault message management
- · Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water loading circuit
 - bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- Rast-5 basic plug set

Hoval Belaria® twin I			with A	output 2W35 W
35 °C	55 °C	Туре	Stage 1	Stage 2
A ⁺	A ⁺	(15)	8.0	15.9
A**	Α ⁺	(20)	10.4	20.8
A**	Α ⁺	(25)	12.5	25.0
A**	A ⁺	(30)	15.2	30.4

Hoval	Belaria®	twin IR	with A	output A2W35 :W	with A	capacity 35W18 W
35 °C	55 °C	Type	Stage 1	Stage 2	Stage 1	Stage 2
A ⁺	A ⁺	(15)	8.0	15.9	10.0	18.4
A**	A ⁺	(20)	10.4	20.8	14.3	26.6
A**	Α ⁺	(25)	12.5	25.0	15.8	30.3
A**	A ⁺	(30)	15.2	30.4	19.0	35.5

Energy efficiency class of the compound system with control

Seal of approval FWS

The Belaria® twin I, twin IR (15-30) series are certified by the seal of approval of the authorisation commission of Switzerland

Options for TopTronic® E controller

- · Can be expanded by max.
 - 1 module expansion:
 - module expansion heating circuit or
 - module expansion heat accounting or
 - module expansion universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

000 00.....

Water connections

- Water connection set complete (included with HP housing, assembly on-site)
- Heating and condensation connections made of flexible pipes with external thread (R) (supplied ex-works). Connection side can be selected on left or right.

Condensate connection

- The drain pipeline is to be made with sufficient incline and without change of the cross-section.
- Siphon on site

Heat source connections (air intake and air blow-off)

- Air intake from the rear (long side)
- Blow-out opening (can be converted for the air blow-out direction to the side left or right)

Electrical connections

- · Connection: at the bottom on the left or right
- Do not attach any rigid connections (e.g. cable duct) to the heat pump housing

Installation

 Variable and cost-effective installation possibilities thanks to blow-off side panel with changeover function

Options for the air duct

 Wall connection element, air intake box, blow-out panel, wall feed-through with weather protection grille or mesh grille

Recommended accessories

 High-efficiency pump with continuously variable speed control, see Accessories

Delivery

- One-piece construction
- Completely packaged

Air/water heat pump - 2-stage

Part No.

Hoval Belaria® twin I

Air/water heat pump for indoor installation with built-in Hoval TopTronic® E control

Control functions integrated for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 hot water loading circuit
- bivalent and cascade management
- Can be optionally expanded by max. 1 module expansion:
 - module expansion heating circuit or
 - module expansion universal
 - module expansion heat accounting
- Can be optionally networked with a total of up to 16 controller modules (incl. solar module)

Incl. a complete water connection set. Without accessories on the air side.

Delivery

One-piece construction; Compact device internally wired ready-for-installation, delivered completely packed, with flexible hoses

Belaria® twin I type	with A	output .2W35 W	
	Stage 1	Stage 2	
(15)	8.0	15.9	7013 500
(20)	10.4	20.8	7013 501
(25)	12.5	25.0	7013 502
(30)	15.2	30.4	7013 503

Notice

Suitable charging pumps:

Hoval system pump set SPS-I with interface for pump control Type 0-10 V or PWM1

Premium pump Stratos

with IF module Stratos Ext. Off (0-10 V)

See brochure "Accessories" - chapter "Circulating pumps"

Notice

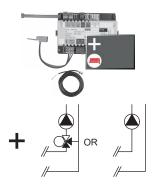
An energy buffer accumulator must be provided.

Matching energy buffer storage tanks see "Calorifiers"

Air/water heat pump - 2-stage Hoval Belaria® twin IR (cooling function)

Design as for Hoval Belaria® twin I, but with cooling function

Belaria® twin IR type	with A	output .2W35 <i>N</i>	with A	capacity 35W18 W	
-71-	Stage 1	Stage 2	Stage 1	Stage 2	
(15)	8.0	15.9	9.2	18.4	7013 504
(20)	10.4	20.8	13.3	26.6	7013 505
(25)	12.5	25.0	15.1	30.3	7013 506
(30)	15.2	30.4	17.7	35.5	7013 507



Sound attenuation cowl for compressor

for reducing the transmission of noise. In heat pumps with two compressors, it is mandatory for two sound attenuation cowls to be ordered.

Belaria [®] twin I/IR type	Number of compressors	
(15)	2	2069 698
(20)	2	2069 699
(25)	2	2069 699
(30)	2	2069 699

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

Notice

The flow rate sensor set must be ordered as well.

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Size	Connection	Flow rate I/min
DN 8	G ¾"	0.9-15
DN 10	G ¾"	1.8-32
DN 15	G 1"	3.5-50
DN 20	G 11/4"	5-85

Brass housing Size	Connection	Flow rate l/min	
DN 10	G 1"	2-40	
DN 32	G 1½"	14-240	

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Part No.

6034 576

6037 062

Flow rate sensor sets Plastic housing

ח

		l/min	
N 8	G ¾"	0.9-15	6038 526
ON 10	G ¾"	1.8-32	6038 507
N 15	G 1"	3.5-50	6038 508
N 20	G 1¼"	5-85	6038 509
N 25	G 1½"	9-150	6038 510

ze	Connection	Flow rate I/min	
N 10	G 1"	2-40	6042 949
N 32	G 1½"	14-240	6042 950

6034 575

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 for controller modules and module expansion 6034 503 TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TopTronic® E buffer module 6037 057 TTE-PS TopTronic® E measuring module TTE-MWA 6034 574 TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 6037 069 comfort white comfort black 6037 070 6039 253 Enhanced language package TopTronic® E one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HovalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 6049 501 HovalConnect domestic starter Modbus HovalConnect domestic starter KNX 6049 593 HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing WG-190 Wall casing small 6035 563 Wall casing medium WG-360 6035 564 WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 Wall casing large 6035 566 WG-510 BM Wall casing large with 6038 533 control module cut-out TopTronic® E sensors 2055 889 AF/2P/K Outdoor sensor TF/2P/5/6T Immersion sensor, L = 5.0 m 2055 888 2056 775 ALF/2P/4/T Contact sensor, L = 4.0 m TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing System housing 182 mm 6038 551 System housing 254 mm 6038 552

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Bivalent switch

Accessories Part No.

Protective pipe immersion sleeve SB280 $\frac{1}{2}$ "

brass nickel-plated PN10, 280 mm

2018 837

Screw-in electrical heating inset

for installations with technical storage tank as emergency heating.

Н	leat output	Installation length	
Type	[kW]	[mm]	
	0.05	000	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.9	620	6049 559
EP 7.5	7.5	850	6049 560

Strainer

Brass casing, PN 16 Max. operating temperature 110 °C Sieve made of stainless steel, Mesh size 0.5 mm DN 25-1" DN 32-11/4"

DN 25-1"	2046 978
DN 32-11/4"	2046 980
DN 40-1½"	2046 982
DN 50-2"	2046 984

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- incl. seals and screw connections

DN	Conn	ection	kvs	V [m³/h] at	
	Valve	Fitting		ΔP 50 mbar	
25	G 1½"	Rp 1"	13	2.91	6045 769
32	G 2"	Rp 11/4"	25	5.59	6045 770
40	G 21/4"	Rp 1½"	49	10.96	6045 771
50	G 2¾"	Rp 2"	73	16.32	6045 772

Suitable motor drive

Туре	Voltage		Actuator run time	
GLB341.9E	230 V / 50/60 Hz	2-/3-poin	150 s	2070 331

Accessories Float ball flow switch

Part No.

2040 708

area of application 600-6000 l/h, 0-80 °C, nominal pressure 10 bar connection Rp 1½" installed length 335 mm bistable reed contact as normally open contact

For active cooling, the installation of a flow controller is mandatory!

Expansion connector set

for the automatic heat pump ECR461.

Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

6032 509

Universal connector set

for automatic heat pump ECR461 Plugs:

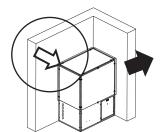
- 3x 230V digital input
- 4x 230V outputs
- 6x low-voltage inputs
- 2x low-voltage outputs
- 1x ratio. input
- 1x electr. expansion valve

Sludge separator CS 25-1" with magnet

for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection Any inst. orientation -360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar

Glycol proportion max.: 50 % Weight: 1.21 kg

Part No.


2063 735

Sludge separator CS 32-11/4" with magnet

for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 11/4"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %

Weight: 1.37 kg

Accessories of the air ducting

Part No.

Indoor installation "standard"

Installation directly on the wall

Wall connection element WAE1

black synthetic rubber, 50 mm, for sealing the suction side directly on the wall. for Belaria® twin I, Belaria® twin IR (15,20) for Belaria® twin I, Belaria® twin IR (25,30)

2033 866 2033 868

Wall insulation MI 1

4-piece, black synthetic rubber, steam-tight, 20 mm thick, depth 330 mm, self-adhesive covering and protected with peel-off film. for Belaria® twin I, Belaria® twin IR (15,20)

2033 856

for Belaria® twin I, Belaria® twin IR (25,30)

2033 858

Weatherproof grille WG 1

Of aluminium with grilles for intake with wall insulation MI 1 for Belaria® twin I, Belaria® twin IR (15,20)

2033 846

for Belaria® twin I, Belaria® twin IR (25,30) 2033 848

Mesh grid MG 1

for wall insulation MI 1 (for air shaft, replaces weatherproof grille WG 1)

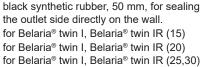
for Belaria® twin I, Belaria® twin IR (15,20) 2033 816 for Belaria® twin I, Belaria® twin IR (25,30) 2033 818

Accessories of the air ducting

Part No.

2033 870

2033 871


2033 872

Indoor installation "standard"

Installation directly on the wall

Wa
4-r
20

all insulation MI 2

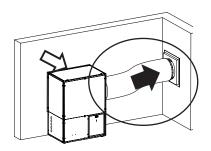
Outlet

piece, black synthetic rubber, steam-tight, mm thick, depth 330 mm, self-adhesive covering and protected with peel-off film

	0	•			
for l	Belaria®	twin I,	Belaria® twin	IR (15)	2033 860
for l	Belaria®	twin I,	Belaria® twin	IR (20)	2033 861
for l	Belaria®	twin I,	Belaria® twin	IR (25,30)	2033 862

Weatherproof grille WG 2

Of aluminium with grilles for outlet with wall insulation MI 2


for Belaria® twin I, Belaria® twin IR (15)	2033 850
for Belaria® twin I, Belaria® twin IR (20)	2033 851
for Belaria® twin I, Belaria® twin IR (25,30)	2033 852

Mesh grid MG 2

for wall insulation MI 2 (for air shaft, replaces weatherproof grille WG 2)

for Belaria® twin I, Belaria® twin IR (15)	2033 820
for Belaria® twin I, Belaria® twin IR (20)	2033 821
for Belaria® twin I, Belaria® twin IR (25,30)	2033 822

Accessories of the air ducting

Part No.

Indoor installation "flex"

"Flex" installation for individual solutions.

Intake

see "standard" installation

Lateral outlet via flexible hose (only for Belaria® twin I, twin IR (15))

Outlet panel "Flex" AP 2 left/right

for Belaria® twin I, twin IR (15) Side wall with outlet aperture for air hose Material: painted sheet steel thermally insulated 2033 828

Air hose LS 2

for Belaria® twin I, twin IR (15) insulated hose of plastic foil outside insulation mineral wool metal spiral inside with plastic foil incl. clamps
L = 2 m (can be shortened), Ø 600 mm

6019 582

Air hose LS 3

for Belaria® twin I, twin IR (15) insulated hose of plastic foil outside insulation mineral wool metal spiral inside with plastic foil incl. clamps
L = 3 m (can be shortened), Ø 600 mm

6019 584

Air hose LS 5

for Belaria® twin I, twin IR (15) insulated hose of plastic foil outside insulation mineral wool metal spiral inside with plastic foil incl. clamps
L = 5 m (can be shortened), Ø 600 mm

6019 586

Air hose connection plate LAP3

for Belaria® twin I, twin IR (15) of galvanised sheet steel with thermal insulation Pipe connection Ø 600 mm

6019 580

Wall insulation MI 3

for Belaria® twin I, twin IR (15)
4-piece
black synthetic rubber
steam-tight
20 mm thick, depth 330 mm
self-adhesive covering and protected
with peel-off film

Part No.

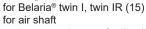
Indoor installation "flex"

"Flex" installation for individual solutions.

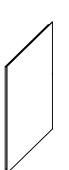
Lateral outlet via flexible hose (only for Belaria® twin I, twin IR (15))

Continuation

Weatherproof grille WG 3


2033 854 for Belaria® twin I, twin IR (15) of aluminium with grilles for outlet

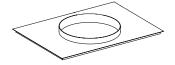
with duct



Mesh grid MG 3

2033 844

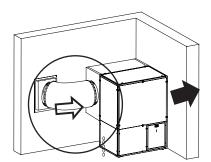
replaces weatherproof grilles WG 3


Panel

Side wall for covering the blow-out opening on the side. Required if the blow-off is upwards or if on-site air ducts are used.

for Belaria® twin I, Belaria® twin IR (15)	
for Belaria® twin I, Belaria® twin IR (20)	
for Belaria® twin I, Belaria® twin IR (25,30)	

6019 778 6020 596 6020 595


Outlet on top via flexible hose (only for Belaria® twin I, twin IR (15))

Outlet panel "Flex" AP2 on top

for Belaria® twin I, twin IR (15) Panel on top with outlet aperture for air hose Ø 600 mm

Material: painted sheet steel thermally insulated

Accessories of the air ducting

Part No.

Indoor installation "vario"

"Vario" installation for individual solutions.

Air intake box ASK

Same housing type as heat pump. With connection opening with changeover function for intake with air hose to Belaria® twin I, Belaria® twin IR (15-30) or on-site air duct.

Туре	Depth mm		
for Belaria® twin I, Belaria® twin IR (15,20)	700	6019 576	
for Belaria® twin I. Belaria® twin IR (25.30)	700	6019 578	

Intake via connection box and flexible hose (only for Belaria® twin I, twin IR (15))

Intake panel AP1

for Belaria® twin I, twin IR (15) for intake box type ASK with pipe connection Material: painted sheet steel thermally insulated

6019 641

Air hose connection plate LAP3

for Belaria® twin I, twin IR (15) of galvanised sheet steel with thermal insulation Pipe connection Ø 600 mm

6019 580

Weatherproof grille WG 3

for Belaria® twin I, twin IR (15) of aluminium with grilles for outlet with duct

2033 854

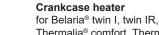
Wall insulation MI 3

for Belaria® twin I, twin IR (15) 4-piece black synthetic rubber steam-tight 20 mm thick, depth 330 mm self-adhesive covering and protected with peel-off film

2033 864

Mesh grid MG 3

for Belaria® twin I, twin IR (15) for air shaft replaces weatherproof grilles WG 3



Accessories of the air ducting

Part No.

Installation with cold ambient temperature

Necessary for heating room temperatures < 10 °C

6019 718

Thermalia® comfort, Thermalia® twin for compressor protection
For Belaria® twin I, twin IR
2 pieces are necessary!

Services

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.

Hoval Belaria® twin I (15,20)

Туре		1st stage	(15)	2nd stage	1st stage	(20)	2nd stage
Seasonal coefficient of performance moderate climate 35 °C /55 °C	SCOP	J	3.7/2.9	· ·	Ü	3.9/2.6	Ü
 Performance data acc. to EN 14511 Heat output A2W35 Power consumption A2W35 Coefficient of performance A2W35 	kW ¹ kW ¹ COP	8.0 2.0 3.9		15.9 4.5 3.6	10.4 2.7 3.9		20.8 5.9 3.5
WeightDimensions	kg		370	see [Dimensions	400	
Compressor type Refrigerant filling R407c	kg		8.8	2 x spiral-((scroll), hermetic	11.3	
 Fan type Nominal air quantity Externally available pressure Max. speed in air ducts 	m³/h Pa m/s		2250-4500 160 4		eed-controlled	3000-6000 200 4	
Evaporator				lamella	r tube Alu/Cu		
Condenser Heating flow and return flow	R		copper br 1"	azed stainles	s steel plate heat	exchanger 1¼″	
Nominal heating water quantityPressure drop heat pump	m³/h kPa		3.20 14			4.49 15	
Max. operating pressure heating side	bar		6			6	
• Ranges of application for heating, hot water and co	ooling see diagrar	m					
Electrical data Voltage Compressor Fan Frequency Voltage range	V V Hz V			3	3 x 400 3 x 400 50 80-420		
Current data Power consumption compressor A2/W35 Power consumption compressor A20/W55 Operating current compressor Imax. Operating current evaporator fan Starting current with jump start Principal current (external protection) Control current (external protection) Electric heating element (external protection)	kW kW A A A A Type A Type A Type	2.02 2.94 5.9 1.00 13.60	16 C,D,K 13 B,C,D,K,Z	4.48 6.53 11.78 1.00 19.37	2.67 4.10 7.8 1.00 16.4	20 C,D,K 13 B,C,D,K,Z - -	5.94 9.10 14.6 2.80 24.2

¹ kW = incl. defrosting loss

Hoval Belaria® twin I (25,30)

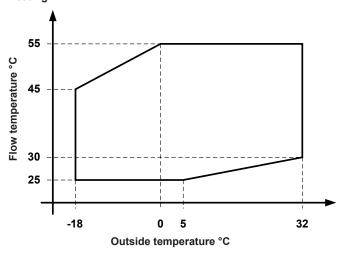
Туре		1st stage	(25)	2nd stage	1st stage	(30) 2nd stage)
Seasonal coefficient of performance moderate climate 35 °C /55 °C	SCOP		3.9/2.9	-		3.8/2.9	
Performance data acc. to EN 14511 • Heat output A2W35 • Power consumption A2W35 • Coefficient of performance A2W35	kW ¹ kW ¹ COP	12.5 3.2 3.9		25.0 7.1 3.5	15.2 4.0 3.8	30.4 8.9 3.4	
Weight Dimensions	kg		455	see Dim	ensions	485	
Compressor typeRefrigerant filling R407c	kg		12.5	2 x spiral-(scr	roll), hermetic	13.0	
 Fan type Nominal air quantity Externally available pressure Max. speed in air ducts 	m³/h Pa m/s	38	800 - 7500 200 4	radial/speed		00 - 9000 200 4	
Evaporator				lamellar tu	ibe Alu/Cu		
Condenser Heating flow and return flow	R		copper bra	azed stainless s	teel plate heat ex	changer 1½″	
Nominal heating water quantityPressure drop heat pump	m³/h kPa		4.85 17			5.14 15	
Max. operating pressure heating side	bar		6			6	
Ranges of application for heating, hot water and	cooling see dia	gram					
Electrical data Voltage Compressor Fan Frequency Voltage range	V V Hz V		3 x 400 3 x 400	380-	;	3 × 400 3 × 400	
Current data Power consumption compressor A2/W35 Power consumption compressor A20/W55 Operating current compressor Imax. Operating current evaporator fan Starting current with jump start Principal current (external protection) Control current (external protection) Electric heating element (external protection)	kW kW A A A Type A Type A Type	3.21 5.19 9.5 1.40 20.2	32 C,D,K 13 B,C,D,K,Z - -	7.14 11.54 17.9 4.20 29.7	4.00 5.76 11.5 1.40 23.6	8.94 12.80 21.9 4.20 35.1 32 C,D,K 13 ,C,D,K,Z	

¹ kW = incl. defrosting loss

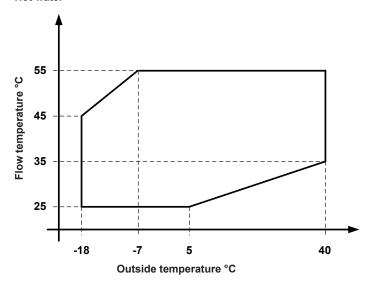
Hoval Belaria® twin IR (15,20)

Туре		1st stage	(15)	2nd stage	1st stage	(20)	2nd stage
Seasonal coefficient of performance moderate climate 35 °C/55 °C	SCOP	rot otago	3.7/2.9	zna stage	rot otago	3.9/2.9	ina stage
Performance data acc. to EN 14511 • Heat output A2W35 • Power consumption A2W35 • Coefficient of performance A2W35	kW ¹ kW ¹ COP	8.0 2.0 3.9		15.9 4.5 3.6	10.4 2.7 3.9		20.8 5.9 3.5
 Cooling capacity A35W10 Power consumption A35W10 Coefficient of performance A35W10 Cooling capacity A35W18 Power consumption A35W18 Coefficient of performance A35W18 	kW kW EER kW kW EER	7.2 2.8 2.59 10.0 3.0 3.32		13.2 5.9 2.25 18.4 6.4 2.89	11.3 3.7 3.03 14.3 4.0 3.58		21.1 8.0 2.66 26.6 8.5 3.13
WeightDimensions	kg		370	see Dim	nensions	400	
Compressor type Refrigerant filling R407c	kg		12.5	2 x spiral-(sci	roll), hermetic	13.0	
Fan type Nominal air quantity Externally available pressure Max. speed in air ducts	m³/h Pa m/s		2250-4500 160 4	radial/spee	d-controlled	3000-6000 200 4	
Evaporator				lamellar tu	ıbe Alu/Cu		
Condenser Heating flow and return flow	R		copper bra	azed stainless s	teel plate heat	exchanger 1¼"	
Nominal heating water quantityPressure drop heat pump	m³/h kPa		3.20 14			4.49 15	
Max. operating pressure heating side	bar		6			6	
• Ranges of application for heating, hot water and c	ooling see diagr	am					
Electrical data							
Voltage • Compressor • Fan Frequency Voltage range	V V Hz V			3 x	400 400 0 -420		
 Current data Power consumption compressor A2/W35 Power consumption compressor A20/W55 Operating current compressor Imax. Operating current evaporator fan Starting current with jump start 	kW kW A A	2.02 2.94 5.9 1.00 13.6		4.48 6.53 10.78 1.00 19.37	2.67 4.10 7.8 1.00 16.4		5.94 9.10 14.6 2.80 24.2
 Principal current (external protection) Control current (external protection) 	A Type A		16 C,D,K 13			20 C,D,K 13	
Electric heating element (external protection)	Type A Type		B,C,D,K,Z - -			B,C,D,K,Z -	

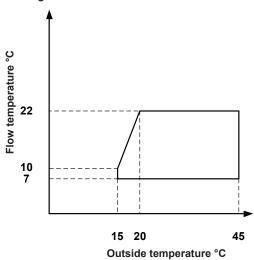
¹ kW = incl. defrosting loss


Hoval Belaria® twin IR (25,30)

Туре			(25)			(30)	
	1	st stage		2nd stage	1st stage	2	2nd stage
Seasonal coefficient of performance moderate climate 35 °C /55 °C	SCOP		3.9/2.9			3.8/2.9	
Power consumption A2W35	kW ¹ kW ¹ COP	12.5 3.2 3.9		25.0 7.1 3.5	15.2 4.0 3.8		30.4 8.9 3.4
Power consumption A35W10	kW kW EER	12.3 4.3 2.87		23.6 9.3 2.54	14.7 5.3 2.78		27.5 11.3 2.44
Power consumption A35W18	kW kW EER	15.8 4.6 3.43		30.3 10.0 3.03	19.0 5.8 3.29		35.5 12.3 2.88
Weight Dimensions	kg		455	see Dimensi	ons	485	
	kg		18.3	2 x spiral-(scroll).		19.8	
Externally available pressure	m³/h Pa m/s	:	3800-7500 200 4	radial/speed-coi		4500-9000 200 4	
Evaporator				lamellar tube A	lu/Cu		
Condenser Heating flow and return flow	R		copper branch	azed/stainless steel	plate heat	exchanger 1½"	
0 1 7	m³/h kPa		4.85 17			5.14 15	
Max. operating pressure heating side	bar		6			6	
 Ranges of application for heating. hot water and cool 	ling see diagram						
Electrical data							
• Fan Y	V V Hz V		3 x 400 3 x 400	380-420		3 x 400 3 x 400	
 Power consumption compressor A20/W55 Operating current compressor Imax. Operating current evaporator fan Starting current with jump start Principal current (external protection) Control current (external protection) Electric heating element (external protection) 	kW kW A A A Type A Type	3.21 5.19 9.5 1.40 20.6	32 C.D.K 13 B.C.D.K.Z -	7.14 11.54 17.9 4.20 29.7	4.00 5.76 11.5 1.40 23.6	32 C.D.K 13 B.C.D.K.Z	8.94 12.80 21.9 4.20 35.1
Electric heating element (external protection)			-			-	Ν.Δ


¹ kW = incl. defrosting loss

Diagrams range of application


Belaria® twin I (15-30), Belaria® twin IR (15-30) Heating

Belaria $^{\rm o}$ twin I (15-30), Belaria $^{\rm o}$ twin IR (15-30) Hot water

Belaria® twin IR (15-30) Cooling

Hoval Belaria® twin I, twin IR (15-30)

Sound pressure level - sound power level

The **sound pressure level** is dependent on the **place of measure-ment** in a sound field and describes the sound intensity at this place. The sound power level thus is a feature of the sound source and therefore is distance-unrelated; it describes the totality of sound power of the relevant source radiated into all directions.

The effective sound pressure in the installation room depends on various factors such as room size, absorption capacity, reflection, free sound propagation etc.

For this reason, it is important to ensure that where possible, the boiler room is outside noise-sensitive areas of the building and equipped with a sound-absorbing door.

Belaria® twin I, twin IR	(1	5)	(2	0)	(2	5)	(30)		
Stage		1	2	1	2	1	2	1	2
Sound power level in the installation room	dB(A)	52	55	55	58	57	60	58	61

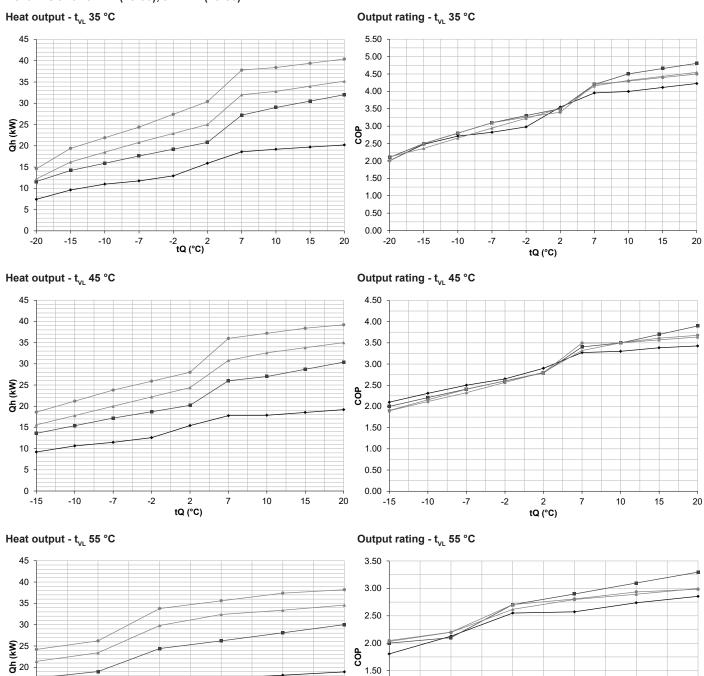
Outlet and intake directly through the wall

The sound pressure levels indicated below apply if the air intake and outlet are positioned across a corner from each other on a straight wall without roofing.

Belaria® twin I, twin IR	aria® twin I, twin IR		(15)		(20)		(25)		30)	
		1	2	1	2	1	2	1	2	
Sound power level ¹	dB(A)	56	61	60	63	62	65	63	66	
Sound pressure level 5 m ¹	dB(A)	40	44	41	45	43	47	44	48	
Sound pressure level 10 m ⁻¹	dB(A)	34	38	35	39	37	41	38	42	l

¹ Information on sound levels applies to whisper mode. Values increase by + 4dB(A) in normal operation

Reduced sound levels (outside) as a result of the installation situation


The following reductions in the sound levels can be assumed as a result of the installation of the following components in the air duct:

- Light well from a depth of 1.5 m: 4 dB(A)
- Air duct insulated on the inside with 90° elbow, L < 2 m: 6 dB(A)
- Air duct insulated on the inside with 90° elbow, L > 2 m: 8 dB(A)

Performance data - heating

Maximum heat output allowing for defrosting losses

Hoval Belaria® twin I (15-30), twin IR (15-30)

1.50

1.00

0.50

0.00

Take account of daily power cuts! see Engineering

tVL = heating flow temperature (°C)

= source temperature (°C)

= heat output at full load (kW), measured in accordance with standard EN 14511

tQ (°C)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Belaria® twin I/IR (15)

20

Belaria® twin I/IR (20)

Belaria® twin I/IR (25)

⁷ tQ (°C)

Belaria® twin I/IR (30)

15

10

Performance data - heating

Hoval Belaria® twin I (15-30), twin IR (15-30)

Indications acc. to EN 14511

tVL	tQ	Qh	(15) P	СОР	Qh	(20) P	СОР	Qh	(25) P	СОР	Qh	(30) P	СОР
°C	°C	kW	kW										
	-20	7.4	3.7	2.01	11.6	5.5	2.10	12.2	5.8	2.12	14.6	7.3	2.01
	-15	9.6	3.9	2.48	14.2	5.7	2.50	16.2	6.9	2.36	19.4	7.8	2.50
	-10	11.0	4.1	2.71	15.9	5.7	2.80	18.5	7.0	2.66	21.9	7.8	2.80
	-7	11.8	4.2	2.82	17.6	5.7	3.10	20.8	7.1	2.95	24.4	7.9	3.10
35	-2	12.9	4.3	2.98	19.2	5.8	3.30	22.9	7.1	3.23	27.4	8.4	3.26
33	2	15.9	4.5	3.55	20.8	5.9	3.50	25.0	7.1	3.50	30.4	8.9	3.40
	7	18.6	4.7	3.96	27.2	6.5	4.20	32.0	7.7	4.16	37.8	9.0	4.20
	10	19.2	4.8	4.00	29.0	6.4	4.50	32.8	7.6	4.32	38.4	8.9	4.30
	15	19.7	4.8	4.11	30.5	6.6	4.66	34.0	7.7	4.43	39.4	9.0	4.40
	20	20.2	4.8	4.23	32.0	6.7	4.80	35.2	7.7	4.55	40.4	9.0	4.50
	-15	9.2	4.6	2.10	13.6	6.8	2.00	15.6	8.2	1.90	18.6	9.8	1.91
	-10	10.6	5.0	2.31	15.4	7.0	2.21	17.8	8.4	2.12	21.2	9.8	2.16
	-7	11.5	5.2	2.50	17.2	7.1	2.41	20.0	8.6	2.33	23.8	9.9	2.40
	-2	12.6	5.4	2.65	18.7	7.2	2.60	22.2	8.7	2.57	25.9	10.0	2.60
45	2	15.4	5.5	2.90	20.2	7.2	2.79	24.4	8.7	2.80	28.0	10.0	2.80
	7	17.8	5.5	3.27	26.0	7.6	3.40	30.8	9.3	3.32	36.0	10.3	3.50
	10	17.9	5.8	3.30	27.0	7.7	3.50	32.6	9.3	3.50	37.2	10.6	3.50
	15	18.5	5.7	3.38	28.7	7.8	3.70	33.8	9.5	3.57	38.4	10.6	3.61
	20	19.2	5.6	3.43	30.4	7.8	3.90	35.0	9.6	3.64	39.2	10.7	3.68
	-2	11.8	6.5	1.81	17.5	8.7	2.00	21.4	10.5	2.03	24.2	11.8	2.05
	2	14.5	6.8	2.13	19.0	9.0	2.10	23.4	10.6	2.20	26.2	11.9	2.20
55	7	16.7	6.5	2.55	24.4	9.0	2.71	29.8	11.4	2.62	33.8	12.5	2.70
55	10	17.3	6.7	2.57	26.2	9.0	2.90	32.4	11.6	2.80	35.6	12.7	2.81
	15	18.2	6.6	2.74	28.1	9.1	3.10	33.4	11.5	2.89	37.4	12.7	2.94
	20	18.9	6.6	2.86	30.0	9.1	3.30	34.6	11.5	3.00	38.2	12.8	2.98

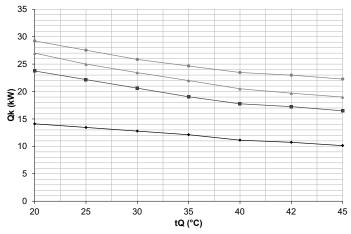
tVL = heating flow temperature (°C)

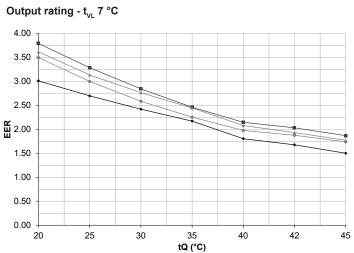
tQ = source temperature (°C)

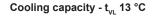
Qh = heat output at full load (kW), measured in accordance with standard EN 14511

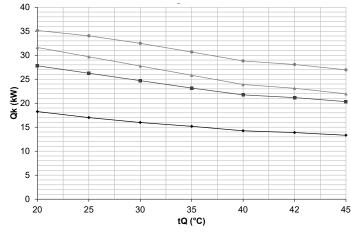
P = power consumption of the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

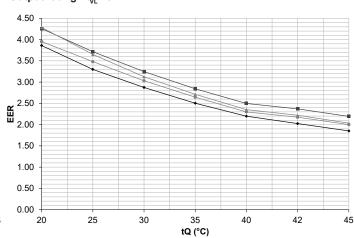

Take account of daily power cuts! see Engineering

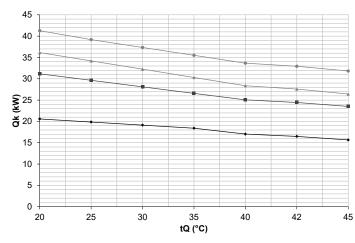

Performance data - cooling

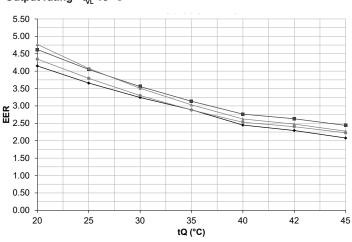

Maximum cooling capacity


Hoval Belaria® twin IR (15-30)

Cooling capacity - t_{VL} 7 °C







Cooling capacity - t_{vL} 18 °C

Output rating - t_{vL} 18 °C

tVL = cooling water flow temperature (°C)

tQ = source temperature (°C)

Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511

EER = Coefficient of Performance for the overall unit in accordance with standard EN 14511

→ Belaria® twin IR (15)

Belaria® twin IR (20)

Belaria® twin IR (25)

Belaria® twin IR (30)

Performance data - cooling

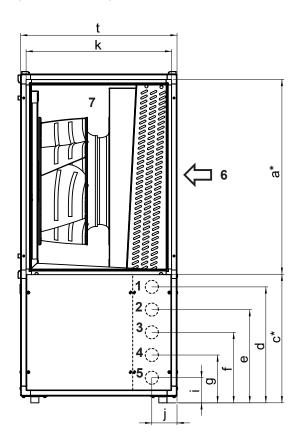
Hoval Belaria® twin IR

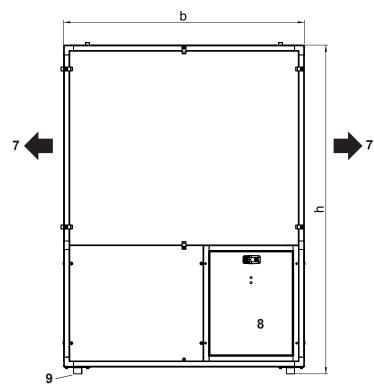
Indications acc. to EN14511

			(15)			(20)			(25)			(30)	
tVL °C	tQ °C	Qk kW	P kW	EER									
	20	14.1	4.7	3.01	23.8	6.3	3.79	27.0	7.5	3.61	29.2	8.4	3.49
	25	13.5	5.0	2.70	22.2	6.8	3.28	25.0	8.0	3.13	27.5	9.2	3.00
	30	12.8	5.3	2.42	20.6	7.3	2.84	23.5	8.5	2.76	25.9	10.0	2.58
7	35	12.1	5.6	2.17	19.0	7.7	2.46	22.0	9.0	2.44	24.7	10.9	2.25
	40	11.1	6.2	1.80	17.8	8.3	2.14	20.5	9.9	2.08	23.5	11.9	1.97
	42	10.7	6.4	1.68	17.3	8.5	2.03	19.7	10.2	1.93	23.0	12.3	1.88
	45	10.1	6.8	1.50	16.5	8.8	1.87	19.0	10.7	1.77	22.3	12.8	1.74
	20	16.9	4.6	3.67	25.8	6.4	4.03	29.3	7.0	4.18	32.3	8.8	3.65
	25	15.3	5.0	3.06	24.2	6.9	3.50	27.4	7.9	3.49	31.2	9.5	3.27
	30	13.9	5.3	2.61	22.6	7.4	3.04	25.5	8.7	2.94	28.9	10.4	2.79
10	35	13.2	5.9	2.25	21.1	7.9	2.66	23.6	9.3	2.54	27.5	11.3	2.44
	40	12.6	6.2	2.03	19.7	8.5	2.33	21.7	9.9	2.19	26.1	12.2	2.14
	42	12.3	6.7	1.85	19.2	8.7	2.20	21.0	10.1	2.07	25.5	12.6	2.03
	45	11.9	7.0	1.70	18.4	9.0	2.03	19.8	10.5	1.88	24.6	13.1	1.88
	20	18.3	4.7	3.86	27.8	6.5	4.26	31.6	7.4	4.28	35.2	8.9	3.9
	25	17.0	5.2	3.30	26.2	7.1	3.71	29.7	8.1	3.65	34.0	9.8	3.48
	30	16.0	5.6	2.87	24.7	7.6	3.25	27.8	8.9	3.13	32.5	10.7	3.03
13	35	15.2	6.1	2.50	23.2	8.1	2.84	25.8	9.5	2.71	30.7	11.6	2.64
	40	14.3	6.5	2.20	21.7	8.7	2.50	23.9	10.2	2.35	28.8	12.5	2.3
	42	13.9	6.9	2.02	21.2	8.9	2.37	23.1	10.4	2.22	28.1	12.9	2.1
	45	13.3	7.2	1.85	20.3	9.3	2.19	22.0	10.8	2.03	27.0	13.5	2.0
	20	19.2	4.8	3.98	29.1	6.6	4.41	33.9	7.7	4.38	37.1	8.9	4.1
	25	18.1	5.3	3.45	27.6	7.2	3.85	32.0	8.4	3.80	36.0	9.9	3.6
	30	17.4	5.7	3.03	26.1	7.7	3.37	30.0	9.1	3.30	34.9	11.0	3.1
15	35	16.5	6.2	2.66	24.5	8.3	2.96	28.0	9.8	2.88	32.8	11.8	2.7
	40	15.4	6.7	2.30	23.1	8.8	2.61	26.1	10.4	2.50	30.7	12.8	2.4
	42	14.9	7.0	2.13	22.5	9.1	2.48	25.3	10.7	2.37	29.8	13.2	2.2
	45	14.3	7.3	1.94	21.6	9.4	2.29	24.1	11.1	2.17	28.5	13.7	2.0
	20	20.6	5.0	4.15	31.2	6.7	4.62	36.1	7.6	4.77	41.3	9.5	4.3
	25	19.9	5.4	3.66	29.6	7.3	4.05	34.2	8.4	4.08	39.2	10.3	3.7
	30	19.1	5.9	3.24	28.1	7.9	3.56	32.3	9.2	3.51	37.3	11.3	3.3
18	35	18.4	6.4	2.89	26.6	8.5	3.13	30.3	10.0	3.03	35.5	12.3	2.8
	40	17.0	7.0	2.45	25.1	9.1	2.77	28.4	10.8	2.62	33.7	13.3	2.5
	42	16.5	7.2	2.29	24.4	9.3	2.63	27.6	11.1	2.48	32.9	13.7	2.4
	45	15.7	7.5	2.08	23.5	9.6	2.44	26.4	11.6	2.28	31.8	14.3	2.2
	20	23.4	5.0	4.70	32.9	6.9	4.76	38.4	8.1	4.74	46.2	9.5	4.8
	25	22.2	5.5	4.04	31.3	7.5	4.18	36.2	8.8	4.12	43.5	10.5	4.1
	30	21.0	6.1	3.46	29.7	8.1	3.67	33.9	9.5	3.59	40.7	11.5	3.5
20	35	19.8	6.5	3.03	28.2	8.6	3.26	31.6	10.1	3.12	37.9	12.6	3.0
	40	18.3	7.1	2.58	26.6	9.2	2.88	29.7	10.9	2.73	35.2	13.6	2.5
	42	17.7	7.3	2.41	25.9	9.5	2.74	28.9	11.2	2.59	34.0	14.0	2.4
	45	16.8	7.7	2.19	25.0	9.8	2.55	27.7	11.5	2.41	32.4	14.6	2.2
	20	26.2	5.0	5.25	34.7	7.1	4.89	38.8	8.2	4.75	47.8	9.5	5.0
	25	24.5	5.6	4.41	33.0	7.7	4.31	36.8	8.9	4.16	45.3	10.6	4.2
	30	22.8	6.1	3.74	31.4	8.2	3.81	34.9	9.6	3.65	42.9	11.7	3.6
22	35	21.2	6.7	3.17	29.7	8.8	3.37	32.9	10.3	3.21	40.4	12.8	3.1
	40	19.5	7.2	2.70	28.1	9.4	2.99	31.0	10.9	2.83	37.9	13.9	2.7
	42	18.9	7.5	2.53	27.4	9.6	2.85	30.2	11.2	2.69	36.9	14.3	2.5
	45	17.9	7.8	2.29	26.4	10.0	2.66	29.0	11.6	2.50	35.4	15.0	2.3

tVL = cooling water flow temperature (°C)

tQ = source temperature (°C)
Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511


P = power consumption of the overall unit (kW)


EER = Energy Efficiency Rate for the overall unit in accordance with standard EN 14511

Take account of daily power cuts! see Engineering

Hoval Belaria[®] twin I (15-30), Belaria[®] twin IR (15-30) (Dimensions in mm)

- 1 Heating flow with flexible connection hose Hoval Belaria® twin I, Belaria® twin IR (15): R 1"; Hoval Belaria® twin I, Belaria® twin IR (20): R 1½"; Hoval Belaria® twin I, Belaria® twin IR (25,30): R 1½"
- 2 For sensor/control lines
- 3 For sensor/control lines
- 4 Heating return with flexible connection hose Hoval Belaria® twin I, Belaria® twin IR (15): R 1"; Hoval Belaria® twin I, Belaria® twin IR (20): R 1½"; Hoval Belaria® twin I, Belaria® twin IR (25,30): R 1½"
- 5 Condensate drain with flexible connection hose 1". An airtight siphon with a minimum height of 100 mm must be installed in the condensate line on-site!

- 6 Air intake (evaporator inlet) Connection directly on the plastic frame (2 mm thick)
- 7 Air outlet opening, panels removable Blow-off directions: optionally towards the left or right side (repositioning on-site) Accessories for indoor installation "flex":

Blow-off panel with air hose connection plate.

- 8 Electrical box and terminal box/TopTronic® E controller and operating switch
- 9 Adjustable feet, see dimension w ± 8 mm (Axis dimension from outside 90 mm)
 - Level heat pump horizontally

Belaria® twin I, Belaria® twin IR	b	h	а	С	d	е	f	g	i	j	k	t
(15)	1200	1635	965	640	575	460	350	240	125	125	720	780
(20)	1200	1735	965	740	675	540	400	260	125	125	820	880
(25,30)	1300	1935	1165	740	675	540	400	260	125	125	920	980

* Dimensions of the divided version of the Belaria® twin I, twin IR (15-30) (only available in Switzerland)

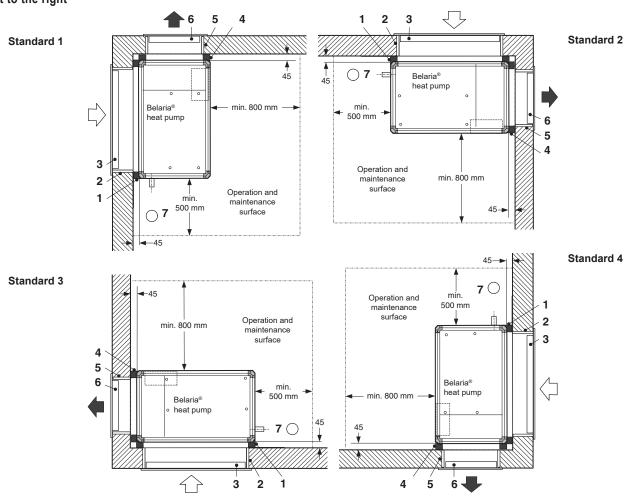
Dimensions

Space requirement "standard" installation with wall insulation MI

"Standard" installation with wall insulation MI

Installation in the corner of the boiler room, directly on the outer wall, with wall connection element and weatherproof grille. Intake at the back, outlet to the right (preferred) or to the left. Water connections on the opposite side.

Cut-outs


The cut-outs must be created professionally and without cold bridges!

The dimensions of the cut-outs are "clear dimensions" measured from the finished floor!

Air ducts

Concrete ducts have unfavourable acoustic properties and often magnify sound emissions. It is therefore advisable to equip the air ducts with a sound-absorbing, weatherproof lining. The air ducts must be drained.

Outlet to the right

			Belaria® twin I, Belaria® twin IR				
Belaria® twin I (15-30), Belaria® twin IR (15-30)	Application	Accessories Type	(15) Part No.	(20) Part No.	(25) Part No.	(30) Part No.	
Heat pump	Indoor installation	1					
1 Wall connection element	Intake	WAE1	2033 866	2033 866	2033 868	2033 868	
2 Wall insulation	Intake	MI 1	2033 856	2033 856	2033 858	2033 858	
3 Weatherproof grille	Intake	WG 1	2033 846	2033 846	2033 848	2033 848	
4 Wall connection element	Outlet	WAE2	2033 870	2033 871	2033 872	2033 872	
5 Wall insulation	Outlet	MI 2	2033 860	2033 861	2033 862	2033 862	
6 Weatherproof grille	Outlet	WG 2	2033 850	2033 851	2033 852	2033 852	
7 Condensate drain (on site siph	on height approx 100 mm	1)					

Dimensions

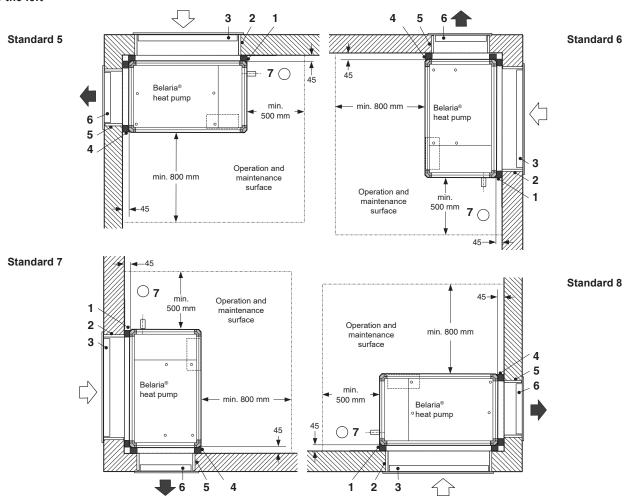
Space requirement "standard" installation with wall insulation MI

"Standard" installation with wall insulation MI

Installation in the corner of the boiler room, directly on the outer wall, with wall connection element and weatherproof grille. Intake at the back, outlet to the right (preferred) or to the left. Water connections on the opposite side.

Cut-outs

The cut-outs must be created professionally and without cold bridges!


The dimensions of the cut-outs are "clear dimensions" measured from the finished floor!

Air ducts

Concrete ducts have unfavourable acoustic properties and often magnify sound emissions. It is therefore advisable to equip the air ducts with a sound-absorbing, weatherproof lining. The air ducts must be drained.

The blow-off opening on the right side should be preferred as a result of accessibility for service!

Outlet to the left

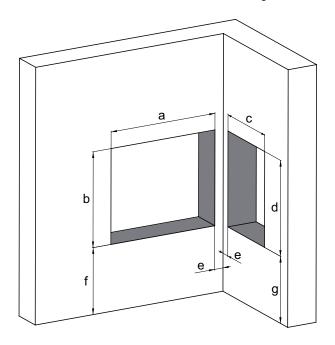
				Belaria® twin I, Belaria® twin IR					
	elaria® twin I (15-30), elaria® twin IR (15-30)	Application	Accessories Type	(15) Part No.	(20) Part No.	(25) Part No.	(30) Part No.		
Н	eat pump	Indoor installation	on						
1	Wall connection element	Intake	WAE1	2033 866	2033 866	2033 868	2033 868		
2	Wall insulation	Intake	MI 1	2033 856	2033 856	2033 858	2033 858		
3	Weatherproof grille	Intake	WG 1	2033 846	2033 846	2033 848	2033 848		
4	Wall connection element	Outlet	WAE2	2033 870	2033 871	2033 872	2033 872		
5	Wall insulation	Outlet	MI 2	2033 860	2033 861	2033 862	2033 862		
6	Weatherproof grille	Outlet	WG 2	2033 850	2033 851	2033 852	2033 852		
7	Condensate drain (on site, sipho	on height approx.100 m	nm)						

■ Dimensions

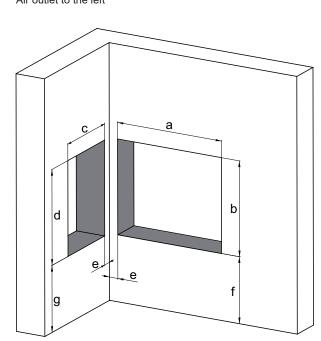
Space requirement "standard" installation with wall insulation MI

Cut-out dimensions

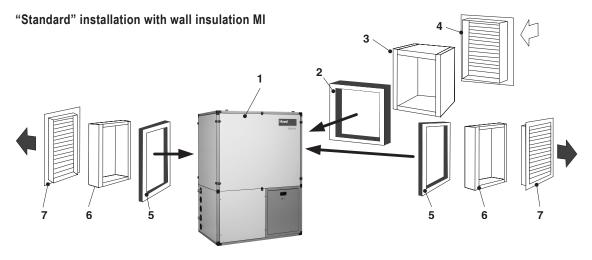
"Standard" installations - heat pump in the corner, without air ducts, with wall insulation MI


(Dimensions in mm)

- The cut-outs must be created professionally.
- Cut-out dimensions from top edge of the finished floor


Standard installation 1-4

Air outlet to the right


Preferred solution due to ease of access for servicing

Standard installation 5–8 Air outlet to the left

Belaria® twin I,	Cut-out dimensions						
Belaria® twin IR	а	b	С	d	е	f	g
(15)	1140	950	720	950	70	640	640
(20)	1140	950	820	950	70	740	740
(25,30)	1240	1150	920	1150	70	740	740

1 Heat pump

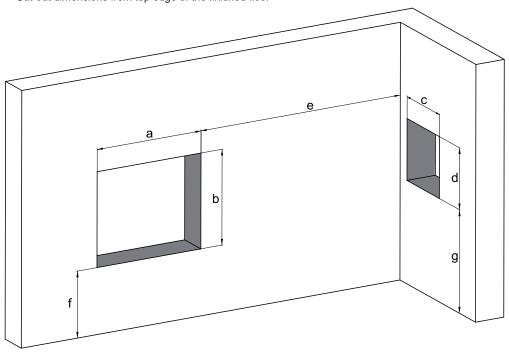
Intake

- 2 Wall connection element
- 3 Wall insulation (20 mm)
- 4 Weatherproof grille

Outlet

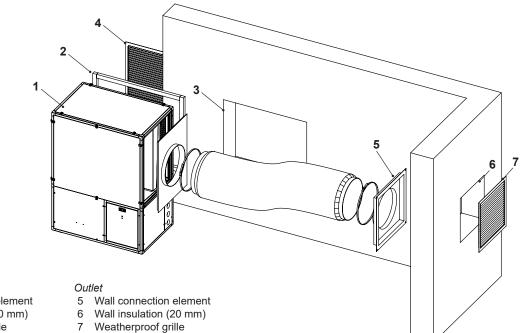
- 5 Wall connection element
- 6 Wall insulation (20 mm)
- 7 Weatherproof grille

Dimensions


Space requirement "flex" installation for Hoval Belaria® twin I and Belaria® twin IR (15)

Cut-out dimensions

"Flex" installations with wall insulation MI


(Dimensions in mm)

- The cut-outs must be created professionally.
- Cut-out dimensions from top edge of the finished floor

Belaria [®] twin I,		Cut-out dimensions							
Belaria® twin IR	а	b	С	d	е	g min.	f		
(15)	1140	950	760	760	> 1000	840	640		

"Flex" installation with wall insulation MI

- 1 Heat pump Intake
- 2 Wall connection element
- 3 Wall insulation (20 mm)
- 4 Weatherproof grille

■ Dimensions

Space requirement "vario" installation for Hoval Belaria® twin I and Belaria® twin IR (15)

Corner installation "standard/vario" combination

(Dimensions in mm from finished floor)

Intake:

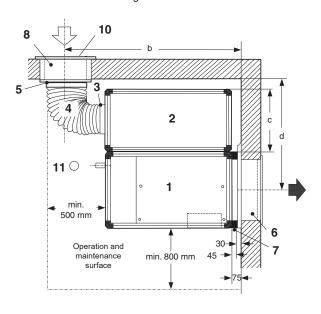
"Vario" with air box as well as air hose and wall feed-through

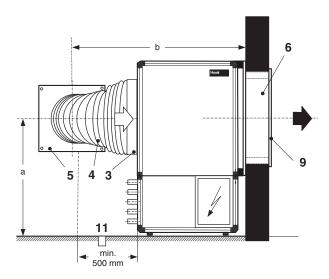
Outlet:

"Standard" with wall lead-through

Air ducting

The minimum bending radius (1R) as well as the operating and maintenance surface must be maintained.


Cut-out


The positions of the openings are to be defined in relation to the system.

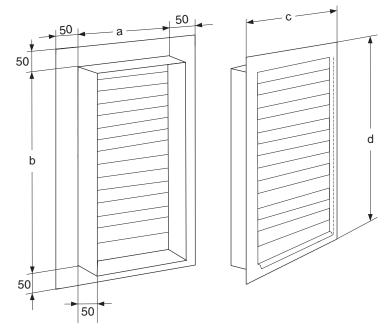
Cut-out dimensions

see "standard" or "flex" installation.

Blow-out to left mirror image

Belaria® twin IR	а	b	С	d
(15)	1140	≥ 2000	700	≥ 1290

	aria® twin I (15), aria® twin IR (15)	Accessories Type	Belaria® twin I, Belaria® twin IR (15) Part No.
1	Heat pump		
2	Air intake box	ASK	6019 576
3	Air hose connection plate, round	AP1	6019 641
4	Air hose, length 2 m	LS 2	6019 582
5	Air hose connection plate, round	LAP3	6019 580
6	Wall insulation	MI 2	2033 860
7	Wall connection element outlet	WAE2	2033 870
8	Wall insulation	MI 3	2033 864
9	Weatherproof grille	WG 2	2033 850
10	Weatherproof grille	WG 3	2033 854
11	Condensate drain (on site, siphon height approx.100	mm)	


■ Dimensions

Dimensions of weatherproof grille (Dimensions in mm)

Weatherproof grille made from aluminium with mesh grid.

For the cut-outs with Hoval wall insulation type MI -E01 (intake) or MI -A01, MI -A02 (outlet).

If the heat insulation for the wall openings is provided on-site, it must be 20 mm thick!

Weatherproof grille	Belaria [®] twin I, Belaria [®] twin IR	Application				
Type	Type	for	а	b	С	d
WG 1 WG 1	(15,20) (25,30)	Intake Intake	1100 1200	900 1100	1180 1280	1000 1200
WG 2 WG 2 WG 2	(15) (20) (25,30)	Outlet Outlet Outlet	680 780 880	900 900 1100	760 860 960	1000 1000 1200
WG 3	(15)	Vario	720	700	800	800

Description

Hoval Belaria® twin A Hoval Belaria® twin AR Air/water heat pump

- Compact air/water heat pump for outside installation
- · High energy efficiency
- Evaporator and refrigeration part are placed adjacent to one another. The refrigeration part is encapsulated with electrolytically galvanised, powder-coated and sound-insulated steel sheets. Colour light grey (RAL 7035).
- Covering made of sheet steel, colour anthracite (DB 703)
- · Two suction gas cooled scroll compressors.
- With large-area, multi-row aluminium/copper ribbed pipe evaporator and copper-brazed plate-type condenser made from stainless steel
- Two electronic expansion valves for the highest efficiency and operational reliability
- Speed-controlled axial ventilator made from high-strength composite material with vanes as a compact unit for low energy consumption and the lowest noise level
- Two electronic starting current limiters with rotary field/phase monitoring.
- Hoval Belaria[®] twin AR additionally with cooling function through inversion of cycle
- Filled with refrigerant R410A, wired up internally ready for connection
- Electrical box for wall mounting inside the building with built-in TopTronic® E controller
- The electrical box is not included in the scope of delivery and must be ordered in addition as an accessory.
- · Strainer ball valve installed
- Connecting hoses already fitted. Heating side pipework in the casing.

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water loading circuit
 - bivalent and cascade management
- · Outdoor sensor
- · Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Rast-5 basic plug set

Hoval Belaria® twin A			Heat output with A2W35		
			Stage 1	Stage 2	
35 °C	55 °C	Type	k\	W	
A**	A**	(17)	10.3	17.2	
A***	A**	(24)	13.1	23.7	
A***	A**	(32)	18.6	31.6	

Hoval Belaria® twin AR			output 2W35	Cooling capacity with A35W7		
			Stage 1	Stage 2	Stage 1	Stage 2
35 °C	55 °C	Type	k۱	kW		W
A***	A**	(17)	10.3	17.2	9.2	17.6
A***	A**	(24)	13.1	23.7	12.7	22.8
A***	A**	(32)	18.6	31.6	16.1	28.8

Energy efficiency class of the compound system with control

Seal of approval FWS

The Belaria® twin A and Belaria® twin AR (17-32) series are certified by the seal of approval of the authorisation commission of Switzerland

Options for TopTronic® E controller

- · Can be expanded by max.
 - 1 module expansion:
 - module expansion heating circuit or
 - module expansion heat accounting or
 - module expansion universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
- measuring module

Number of modules that can be additionally installed in the electrical box:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Condensate connection

- The drain pipeline is to be made with sufficient incline and without change of the cross-section.
- The water connections and the drain pipelines must be carried out outdoors and must be protected against frost on site (see base plan).

Hvdraulic connections

Heating connections with flexible hoses to the bottom

Electrical connections

· Connection from the bottom (see base plan)

Options

Diffuser for sound reduction

Delivery

One-piece design. Compact unit wired-up internally ready for connection.

Recommended accessories

High-efficiency pump with continuously variable speed control

Part No.

■ Part No.

Notice

Suitable charging pumps:

Hoval system pump set SPS-I with interface for pump control Type 0-10 V or PWM1

Premium pump Stratos with IF module Stratos Ext. Off (0-10 V)

See brochure "Accessories" - chapter "Circulating pumps"

Energy efficiency class see Description

Notice

An energy buffer accumulator must be provided.

Matching energy buffer storage tanks see "Calorifiers"

Air/water heat pump - 2-stage

Hoval Belaria® twin A

Air/water heat pump for outdoor installation without electrical box.

Delivery

One-piece design. Compact unit wired-up internally ready for connection.

Belaria® twin A type	Heat with A k'		
,,	Stage 1	Stage 2	
(17)	10.3	17.2	7016 819
(24)	13.1	23.7	7016 820
(32)	18.6	31.6	7016 821

Hoval Belaria® twin AR (cooling function)

Design as for Hoval Belaria® twin A, but with cooling function.

Belaria [®] twin AR type	with A	Heat output with A2W35 kW		capacity 35W7 W	
	Stage 1	Stage 2	Stage 1	Stage 2	
(17)	10.3	17.2	9.2	17.6	7016 822
(24)	13.1	23.7	12.7	22.8	7016 823
(32)	18.6	31.6	16.1	28.8	7016 824

The electrical box with built-in TopTronic® E controller must be ordered separately.

If the heat pump is ordered without electrical box, engineering must absolutely be performed by Hoval, otherwise it will not be taken into operation.

Part No.

6046 330

2056 705

Electrical box

for wall installation in building interiors with built-in Hoval TopTronic® E controller Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- · Option of extending by max. 1 module extension:
- heating circuit module extension or
- heat balancing module extension or
- universal module extension
- · Option of networking with up to 16 controller modules (incl. solar module)

Incl. outdoor sensor, immersion sensor (calorifier sensor), contact sensor (flow temperature sensor) and RAST 5 basic connector set

Sound attenuation cowl for compressor

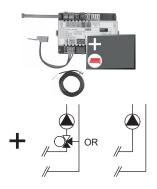
for reducing the transmission of noise. In heat pumps with two compressors, it is mandatory for two sound attenuation cowls to be ordered.

Belaria® twin A/AR	Number of	
type	compressors	
(17)	2	2069 695
(24)	2	2069 696
(32)	2	2069 697

Set vibration-damping adjustable feet 35/55

for reducing the transmission of solid-borne noise Set comprises 4 vibration-damping adjustable feet, threaded rot and locknut Material elastomer part: NR, black Material housing: galvanised steel, chromated fc fc

Material flouding: garvarileed steel, enformated	
for Belaria® twin A/AR (17)	6040 346
for Belaria® twin A/AR (24)	6040 347
for Belaria® twin A/AR (32)	6040 348



Diffuser

for fan of Belaria® twin A, twin AR, dual AR for greater efficiency and lower by up to 3 dB(A) depending on circumstances

Recommended accessory: continuously variable speed control

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

Notice

The flow rate sensor set must be ordered as well.

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in:

Boiler control, wall housing, control panel

Flow rate sensor sets

Plastic housing

Size	Connection	Flow rate I/min
DN 8	G ¾"	0.9-15
DN 10	G ¾"	1.8-32
DN 15	G 1"	3.5-50
DN 20	G 1¼"	5-85
DN 25	G 1½"	9-150

Brass housing Size	Connection	Flow rate I/min	
DN 10	G 1"	2-40	
DN 32	G 1½"	14-240	

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Part No.

6034 576

6037 062

0037 002

6042 949 6042 950

6034 575

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

Notice

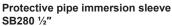
HovalConnect available from summer 2019

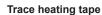
Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 6034 503 for controller modules and module expansion TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TopTronic® E buffer module 6037 057 TTE-PS TopTronic® E measuring module 6034 574 TTE-MWA TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 comfort white 6037 069 6037 070 comfort black 6039 253 Enhanced language package TopTronic® E one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HoyalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 HovalConnect domestic starter Modbus 6049 501 HovalConnect domestic starter KNX 6049 593 HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing WG-190 Wall casing small 6035 563 WG-360 6035 564 Wall casing medium WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 Wall casing large 6035 566 WG-510 BM Wall casing large with 6038 533 control module cut-out TopTronic® E sensors 2055 889 AF/2P/K Outdoor sensor TF/2P/5/6T Immersion sensor, L = 5.0 m 2055 888 ALF/2P/4/T 2056 775 Contact sensor, L = 4.0 m TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing System housing 182 mm 6038 551 System housing 254 mm 6038 552

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

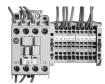

Bivalent switch



Part No.

brass nickel-plated PN10, 280 mm 2018 837

for heating a condensate drainage pipe (on site) and a condensate drip tray KWD with thermostat and microfuses Output: 40-80 W 230 V


Output: 40-80 W, 230 V Length: cable 1.5 m; heating tape 2 m 6033 374

Screw-in electrical heating inset

for plants with energy buffer storage tank as emergency heating.
Control set must be ordered.

t output kW]	Installation depth [mm]	
2.35 3.6 4,9	390 500 620 850	6049 557 6049 558 6049 559 6049 560
	kW] 2.35 3.6	2.35 390 3.6 500 4,9 620

Control set (switching contactor)

for installation in the wall-hanging electrical box.

6033 403

Necessary for the control of an electrical heating inset.

Silt trap

Casing made of brass, PN 16 Max. operating temperature 110 °C Sieve made of stainless steel, size of mesh 0.5 mm

DN 25-1"	2046 978
DN 32-11/4"	2046 980
DN 40-1½"	2046 982
DN 50-2"	2046 984

see "Various system components"

Sludge separator CS 40-11/2" with magnet

for flow rates of 3.0 - 5.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1½"
Drain made of brass: hose connection Any inst. orientation - 360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar
Glycol proportion max.: 50 %

Weight: 1.88 kg

Accessories

Part No.

Sludge separator CS 50-2" with magnet

for flow rates of 5.0-8.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 2"
Drain made of brass: hose connection Any inst. orientation - 360° rotating
Temperature range -10 to 120 °C
Operating pressure max.: 10 bar

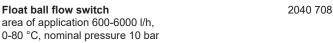
Glycol proportion max.: 50 % Weight: 2.32 kg

2063 738

Circulation pumps, actuators, buffer storage tanks see separate brochures

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- · incl. seals and screw connections


DN	Conne	ection	kvs	V [m³/h] at	
	Valve	Fitting		ΔP 50 mbar	
25	G 1½"	Rp 1"	13	2.91	6045 769
32	G 2"	Rp 11/4"	25	5.59	6045 770
40	G 21/4"	Rp 1½"	49	10.96	6045 771
50	G 2¾"	Rp 2"	73	16.32	6045 772

Suitable motor drive

Туре	Voltage		Actuator
		signal	run time

GLB341.9E 230 V / 50/60 Hz 2-/3-point 150 s

connection Rp 1½" installed length 335 mm bistable reed contact as normally open contact

Float ball flow switch

area of application 1500-15000 l/h, 0-80 °C, nominal pressure 10 bar connection Rp 2" installed length 335 mm bistable reed contact as normally open contact

For active cooling, the installation of a flow controller is mandatory!

2040 709

Expansion connector set

for the automatic heat pump ECR461. Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

Universal connector set

for automatic heat pump ECR461 Plugs:

- 3x 230V digital input
- 4x 230V outputs
- 6x low-voltage inputs
- 2x low-voltage outputs
- 1x ratio. input
- 1x electr. expansion valve

Part No.

6032 509

6032 510

Service

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

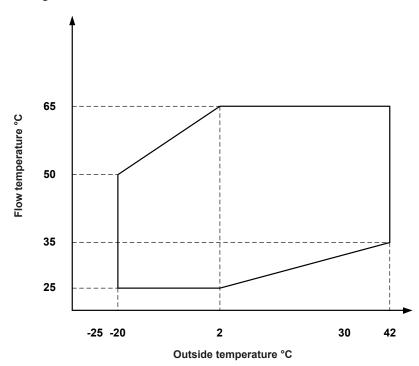
For commissioning and other services please contact your Hoval sales office.

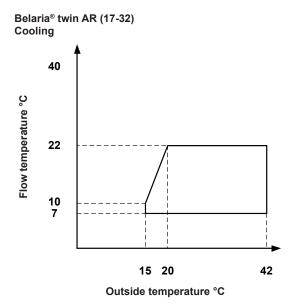
Hoval Belaria® twin A (17-32)

Туре		(1	7)	(2	24)	(3	32)
.,,,,		,	2nd stage	1st stage	,	1st stage	2nd stage
Seasonal coefficient of performance moderate climate 35 $^{\circ}\text{C}$ /55 $^{\circ}\text{C}$	SCOP	4.4	/3.3	4.4	/3.3	4.4/3.3	
 Performance data acc. to EN 14511 Heat output A2W35 Power consumption A2W35 Coefficient of performance A2W35 	kW ¹ kW ¹ COP	10.3 2.2 4.6	17.2 4.2 4.1	13.1 2.9 4.6	23.7 5.8 4.1	18.6 4.1 4.5	31.6 7.9 4.0
WeightDimensions	kg	43	30	-	75 nensions	5	90
Compressor type Refrigerant filling R410A	kg	12	2.8		roll), hermetic 5.7		6.0
Fan type Nominal air quantity	m³/h	3500	-7000		d-controlled -9000	5500-	-11000
Expansion valveEvaporator		2 x, electronically controlled lamellar tube Alu/Cu			d		
Condenser Heating flow and return flow	R	copper brazed stainless steel plate heat exch			•	exchanger 1½" (outer thread)	
 Heating water quantity 5k ΔT Pressure drop heat pump 	m³/h kPa		75 I.2	5.05 10.7		6.60 11.9	
max. operating pressure heating side	bar			;	3		
Ranges of application for heating and hot water				see dia	agrams		
Electrical data							
Voltage • Compressor • Fan Frequency Voltage range	V V Hz V			3 x	400 400 50 -420		
 Current Power consumption compressor A2/W35 Power consumption compressor A20/W55 Operating current compressor Imax. Operating current evaporator fan Starting current with jump start Principal current (external protection) Control current (external protection) 	kW kW A A A A type A		4.23 7.38 14.5 1.45 2.8 0 C,D,K 13 B,C,D,K,Z	C,D,K 13	5.85 9.33 18.4 1.45 9.3 5 C,D,K 13 B,C,D,K,Z		7.87 12.65 25.4 1.45 9.5 C,D,K 13 B,C,D,K,Z

¹ kW = incl. defrosting loss

Hoval Belaria® twin AR (17-32)


Туре		,	17)	•	(4)	(32)	
Occupation of the state of the		1st stage	2nd stage	1st stage	2nd stage	1st stage	2nd stage
Seasonal coefficient of performance moderate climate 35 $^{\circ}\text{C}$ /55 $^{\circ}\text{C}$	SCOP	4.5	/3.4	4.5	/3.4	4.5	7/3.3
Performance data acc. to EN 14511 • Heat output A2W35	kW ¹	10.3	17.2	13.1	23.7	18.6	31.6
Power consumption A2W35Coefficient of performance A2W35	kW ¹ COP	2.2 4.60	4.2 4.10	2.9 4.60	5.8 4.10	4.1 4.50	7.9 4.00
Cooling capacity A35W7Power consumption A35W7Coefficient of performance A35W7	kW kW EER	9.5 2.6 3.64	17.6 6.0 2.93	12.6 3.60 3.5	22.8 8.17 2.79	16.2 4.7 3.41	28.8 10.6 2.71
Cooling capacity A35W18Power consumption A35W18Coefficient of performance A35W18	kW kW EER	12.7 2.7 4.8	23.5 6.2 3.8	17.4 3.9 4.49	31.4 8.8 3.58	22.7 5.2 4.34	40.4 11.7 3.44
WeightDimensions	kg	4:	30		75 nensions	5	90
Compressor type Refrigerant filling R410A	kg	9	.7		roll), hermetic 1.6	14.8	
Fan type Nominal air quantity	m³/h	3500	-7000	radial/speed-controlled 4500-9000		5500-11000	
Expansion valveEvaporator				2 x, electronic lamellar to	cally controlled ube Alu/Cu	d	
Condenser Heating flow and return flow	R	1¼" (out	copper braz er thread)	zed/stainless s 1½″ (out	steel plate hea er thread)	•	er thread)
 Heating water quantity 5k ΔT Pressure drop heat pump 	m³/h kPa		75 4.2	5.05 10.7		6.60 11.9	
max. operating pressure heating side	bar			;	3		
• Ranges of application for heating, hot water and coo	ling			see dia	agrams		
Electrical data							
Voltage • Compressor • Fan	V V				400 400		
Frequency Voltage range	Hz V	3 x 400 50 380-420					
Current							
Power consumption compressor A2/W35 Power consumption compressor A2/W55	kW kW	2.21 4.05	4.23 7.38	2.84 5.02	5.85 9.33	4.07 6.01	7.87 12.65
 Power consumption compressor A20/W55 Operating current compressor Imax. 	A	4.05 7.3	7.36 14.5	9.2	9.33 18.4	12.9	25.4
Operating current evaporator fan	A	-	1.45	-	1.45	-	1.45
Starting current with jump start	Α		2.8		9.3		9.5
Principal current (external protection)	A		20		25		32
Control current (external protection)	type A	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13
Control outfort (external protection)	type	B,C,D,K,Z	B,C,D,K,Z		B,C,D,K,Z	B,C,D,K,Z	B,C,D,K,Z


¹ kW = incl. defrosting loss

A flow controller must be installed for operational reliability in cooling mode.

Diagrams range of application

Belaria® twin A (17-32), Belaria® twin AR (17-32) Heating and hot water

Hoval Belaria® twin A (17-32) Hoval Belaria® twin AR (17-32)

Sound pressure level - sound power level The sound pressure level is dependent on the place of measurement in a sound field and describes the sound intensity at this place. The sound power level thus is a feature of the sound source and therefore is distance-unrelated; it describes the totality of sound power of the relevant source radiated into all directions.

Structure-borne sound

All connections must be fitted with compensators or vibration absorbers so that no structureborne sound is being transmitted.

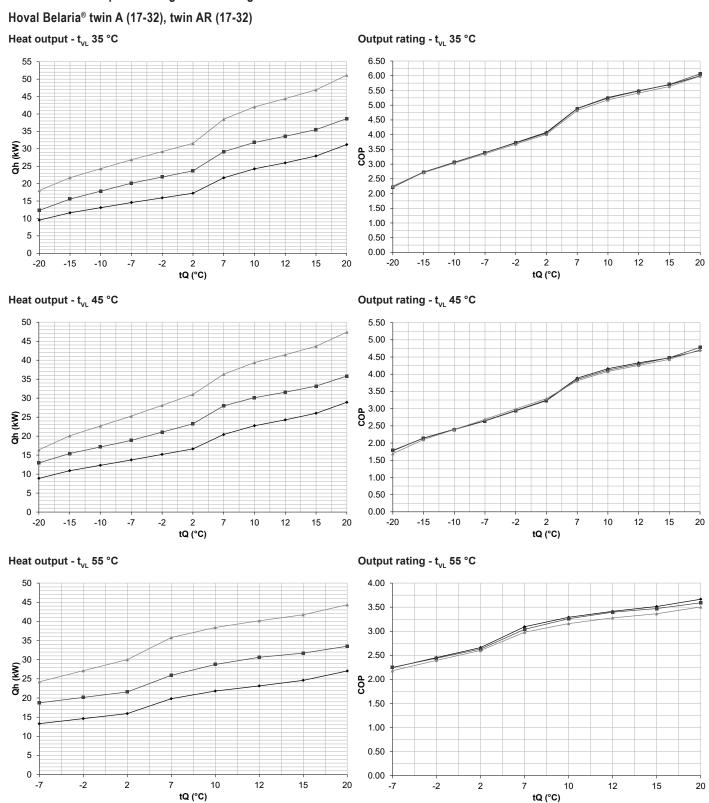
Special precautions must be taken for roof installation.

Heat pump with diffuser on the blow-out. Entails a reduction of the sound power level of approx. 3 dB(A) depending on speed of rotation of ventilator.

Sound propagation

The further away you are from a sound source, the lower the acoustic energy, and consequently the immission values. In general, not only the distance between the heat pump and the immission point should be considered with regard to propagation, but also, depending on the circumstances, the following factors:

- · Installation location
 - free-standing (reference factor Q= 2)
 - on the facade (reference factor Q=4)
 - in the corner (reference factor Q=8)
- · Effect of obstacles
- · Reflection against buildings, trees or rocks
- · Effect of reflections from the ground
- · Attenuation by the air and the ground
- Effect of wind and temperature stratifications of the air


The table below contains reference values and only takes account of the distance and installation location.

Belaria® twin A, Belaria® twin AR Type	Sound pressure level outside dB(A)	Distance m	Sound pressure level free installation dB(A)	Sound pressure level on facade dB(A)
(17)	63	1 5	55 41	58 44
(24)	66	1 5	58 44	61 47
(32)	72	1 5	64 50	67 53

Information on sound levels applies to whisper mode. Values increase by + 4 dB(A) in normal operation

Performance data - heating

Maximum heat output allowing for defrosting losses

Take account of daily power cuts! see Engineering

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

← Belaria® twin A/AR (17)

Belaria[®] twin A/AR (24)

Belaria® twin A/AR (32)

Performance data - heating

Hoval Belaria® twin A (17-32), twin AR (17-32)

Indications acc. to EN 14511

Type tVL °C	tQ °C	Qh kW	(17) P kW	COP	Qh kW	(24) P kW	СОР	Qh kW	(32) P kW	СОР
	-20	9.5	4.2	2.25	12.3	5.6	2.21	18.0	8.0	2.25
	-15 -10	11.6 13.1	4.3 4.3	2.73 3.06	15.6 17.9	5.7 5.8	2.72 3.06	21.7 24.3	8.0 8.0	2.71 3.03
	-7	14.6	4.3	3.39	20.1	5.9	3.39	26.9	8.0	3.35
0.5	-2	15.9	4.3	3.73	21.9	5.9	3.72	29.2	7.9	3.68
35	2 7	17.2 21.7	4.2 4.4	4.08 4.89	23.7 29.2	5.9 6.0	4.05 4.88	31.6 38.5	7.9 8.0	4.01 4.82
	10	24.3	4.6	5.26	31.8	6.1	5.24	42.0	8.1	5.18
	12	26.0	4.7	5.49	33.6	6.1	5.48	44.4	8.2	5.41
	15 20	27.9 31.2	4.9 5.2	5.69 6.00	35.5 38.7	6.2 6.4	5.71 6.07	46.9 51.2	8.3 8.5	5.63 5.99
	-20	9.2	4.6	1.99	12.6	6.4	1.97	17.2	8.8	1.94
	-15	11.3	4.7	2.41	15.5	6.5	2.40	20.9	8.8	2.38
	-10 -7	12.7 14.2	4.7 4.7	2.70 2.98	17.5 19.5	6.5 6.6	2.69 2.98	23.5 26.1	8.7 8.7	2.68 2.99
	-2	15.5	4.7	3.30	21.5	6.5	3.29	28.7	8.7	3.30
40	2	16.9	4.7	3.62	23.5	6.5	3.60	31.3	8.6	3.62
	7 10	21.0 23.5	4.8 5.0	4.35 4.66	28.6 31.0	6.6 6.7	4.32 4.63	37.4 40.7	8.8 8.9	4.27 4.58
	12	25.1	5.2	4.86	32.6	6.7	4.83	42.9	9.0	4.79
	15	27.0	5.4	5.03	34.3	6.8	5.03	45.3	9.1	4.98
	-20 -20	30.1 8.9	5.7 5.0	5.29 1.77	37.1 12.9	6.9 7.2	5.34 1.79	49.2 16.4	9.3 9.7	5.28 1.69
	-15	10.9	5.1	2.15	15.4	7.2	2.14	20.1	9.6	2.10
	-10 -7	12.3 13.7	5.1 5.2	2.40 2.65	17.2 18.9	7.2 7.2	2.39 2.64	22.7 25.3	9.5 9.4	2.39 2.69
	-1 -2	15.7	5.2	2.05	21.1	7.2	2.04	28.1	9.4	2.09
45	2	16.6	5.1	3.25	23.2	7.2	3.23	31.0	9.4	3.29
	7 10	20.4 22.7	5.3 5.5	3.89 4.16	28.0 30.1	7.3 7.3	3.85 4.12	36.3 39.4	9.5 9.7	3.81 4.08
	10	24.3	5.6	4.16	31.6	7.3 7.4	4.12	39.4 41.4	9.7 9.7	4.06 4.26
	15	26.0	5.8	4.47	33.2	7.4	4.48	43.7	9.9	4.43
	20 -20	28.9	6.2	4.69	35.8	7.5	4.78	47.4	10.1	4.71
	-15	-	-	-	-	-	-	-	-	-
	-10 -7	- 13.5	-	-	-	- 7.7	-	-	-	-
	-7 -2	14.9	5.6 5.6	2.43 2.68	18.8 20.6	7.7 7.7	2.43 2.67	24.8 27.6	10.3 10.4	2.41 2.66
50	2	16.3	5.6	2.93	22.4	7.7	2.91	30.5	10.5	2.91
	7 10	20.1 22.3	5.8 6.0	3.45 3.68	27.0 29.4	7.9 8.1	3.42 3.65	36.0 38.9	10.8 10.9	3.35 3.57
	12	23.7	6.2	3.83	31.1	8.2	3.80	40.8	11.0	3.71
	15	25.3	6.4	3.95	32.4	8.4	3.88	42.7	11.1	3.84
	-20 -20	28.0	6.8	4.13	34.7	8.7	4.00	45.9	11.4	4.04
	-15	-	-	-	-	-	-	-	-	-
	-10	-	-	-	-	-	-	-	-	-
	-7 -2	13.3 14.6	5.9 6.0	2.24 2.45	18.8 20.2	8.3 8.3	2.25 2.44	24.2 27.1	11.1 11.3	2.18 2.39
55	2	15.9	6.0	2.66	21.6	8.2	2.63	30.0	11.5	2.60
	7	19.8	6.4	3.09	25.9	8.5	3.04	35.8	12.0	2.98
	10 12	21.8 23.2	6.6 6.8	3.29 3.41	28.8 30.6	8.8 9.0	3.26 3.40	38.4 40.2	12.2 12.3	3.16 3.28
	15	24.6	7.0	3.51	31.7	9.1	3.47	41.7	12.4	3.36
	-20 -20	27.1	7.4	3.67	33.5	9.3	3.59	44.3	12.7	3.50
	-15	-	-	-	-	-	-	-	-	-
	-10	-	-	-	-	-	-	-	-	-
	-7 -2	-	-	-	-	-	-	-	-	-
60	2	15.5	7.1	2.18	20.5	9.6	2.13	29.4	14.1	2.08
	7	19.4	7.6	2.56	25.0	10.0	2.51	35.4	14.5	2.44
	10 12	21.2 22.4	7.7 7.8	2.74 2.86	27.8 29.6	10.3 10.5	2.70 2.82	38.0 39.7	14.5 14.5	2.62 2.74
	15	23.7	8.0	2.96	30.5	10.6	2.87	40.7	14.5	2.82
	20	25.8	8.3	3.13	32.0	10.8	2.96	42.4	14.4	2.94

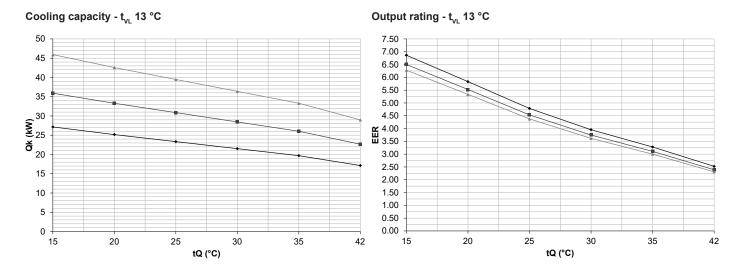
tVL = heating flow temperature (°C)

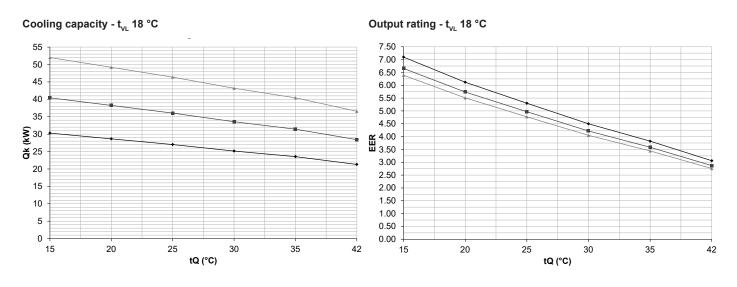
tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

= power consumption of the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511


Take account of daily power cuts! see Engineering


Performance data - cooling

Maximum cooling capacity

Hoval Belaria® twin AR (17-32)

tVL = cooling water flow temperature (°C)

tQ = source temperature (°C)

Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511

EER = Coefficient of Performance for the overall unit in accordance with standard EN 14511

→ Belaria® twin AR (17)

-■- Belaria® twin AR (24)

→ Belaria® twin AR (32)

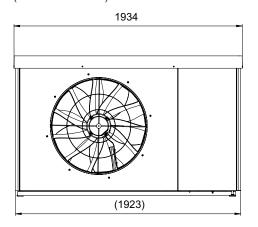
Performance data - cooling

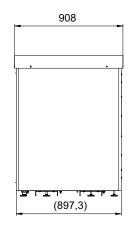
Hoval Belaria® twin AR (17-32)

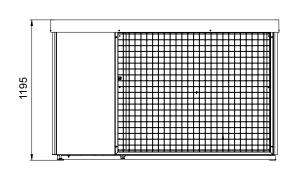
Indications acc. to EN14511

Type tVL °C	tQ °C	Qk kW	(17) P kW	EER	Qk kW	(24) P kW	EER	Qk kW	(32) P kW	EER
	15	21.7	4.2	5.22	28.2	5.6	4.98	35.5	7.4	4.83
	20	20.8	4.2	4.52	27.0	6.2	4.32	34.0	8.1	4.03
	25	19.9	5.0	3.94	25.8	6.8	3.77	32.5	8.9	3.65
7	30	19.9	5.5	3.46	24.6	7.4	3.30	31.0	9.7	3.20
	35	17.6	6.0	2.93	22.8	8.2	2.79	28.8	10.6	2.71
	42	15.7	6.8	2.32	20.3	9.2	2.73	25.6	11.9	2.14
	15	25.1	3.7	6.77	33.1	5.2	6.42	42.3	6.8	6.20
	20	23.5	4.3	5.51	31.0	5.9	5.23	39.6	7.8	5.05
	25	22.0	4.8	4.55	28.9	6.7	4.32	36.9	8.9	4.17
10	30	20.4	5.4	3.79	26.9	7.5	3.59	34.3	9.9	3.47
	35	18.8	5.9	3.16	24.8	8.3	3.00	31.6	10.9	2.90
	42	16.6	6.7	2.47	21.8	9.3	2.34	27.9	12.3	2.26
	15	27.2	4.0	6.86	35.9	5.5	6.50	45.9	7.3	6.28
	20	25.2	4.3	5.83	33.3	6.0	5.52	42.6	8.0	5.33
	25	23.3	4.9	4.78	30.9	6.8	4.53	39.5	9.0	4.38
13	30	21.5	5.4	3.95	28.5	7.6	3.75	36.4	10.1	3.62
	35	19.7	6.0	3.28	26.0	8.4	3.11	33.3	11.1	3.00
	42	17.1	6.8	2.52	22.7	9.5	2.39	29.0	12.6	2.31
	15	28.9	4.1	7.05	38.0	5.8	6.60	48.4	7.6	6.33
	20	27.0	4.5	6.03	35.5	6.3	5.64	45.2	8.4	5.41
	25	25.2	5.0	5.06	33.2	7.0	4.74	42.2	9.3	4.54
15	30	23.3	5.5	4.23	30.7	7.7	3.96	39.1	10.3	3.80
	35	21.6	6.1	3.55	28.4	8.5	3.32	36.2	11.4	3.18
	42	19.6	6.8	2.87	25.8	9.6	2.68	32.9	12.8	2.57
	15	30.3	4.3	7.10	40.4	6.1	6.66	52.0	8.1	6.39
	20	28.7	4.7	6.12	38.2	6.7	5.74	49.2	8.9	5.51
40	25	27.0	5.1	5.30	36.1	7.3	4.97	46.4	9.7	4.77
18	30	25.2	5.6	4.50	33.6	8.0	4.22	43.2	10.7	4.05
	35	23.5	6.2	3.82	31.4	8.8	3.58	40.4	11.8	3.44
	42	21.3	7.0	3.06	28.4	9.9	2.87	36.6	13.3	2.76
	15	30.5	4.2	7.32	41.7	6.0	6.91	54.5	8.2	6.67
	20	29.2	4.7	6.26	39.6	6.7	5.90	51.6	9.1	5.68
20	25	27.8	5.2	5.40	37.6	7.4	5.07	48.7	10.0	4.88
20	30	26.5	5.6	4.69	35.5	8.1	4.39	45.9	10.9	4.21
	35	25.1	6.1	4.10	33.2	8.8	3.77	42.5	11.9	3.57
	42	23.2	6.8	3.41	30.6	9.7	3.14	39.0	13.1	2.98
	15	33.2	4.2	7.85	44.3	6.1	7.28	56.9	8.2	6.94
	20	31.5	4.8	6.62	42.0	6.8	6.14	54.0	9.2	5.85
22	25	29.8	5.3	5.63	39.7	7.6	5.22	51.1	10.3	4.98
~	30	28.1	5.7	4.91	37.5	8.2	4.55	48.2	11.1	4.34
	35	26.0	6.2	4.18	34.6	8.9	3.88	44.5	12.0	3.70
	42	24.1	6.9	3.52	32.2	9.9	3.27	41.4	13.3	3.12

tVL = cooling water flow temperature (°C)

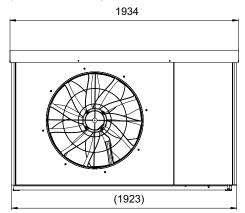

tQ = source temperature (°C)

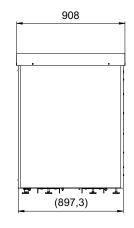

Qk = cooling capacity at full load (kW), measured in accordance with standard EN 14511 P = power consumption of the overall unit (kW)

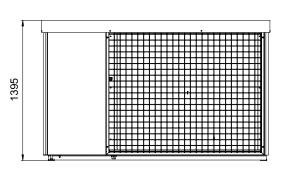

EER = Energy Efficiency Rate for the overall unit in accordance with standard EN 14511

■ Dimensions

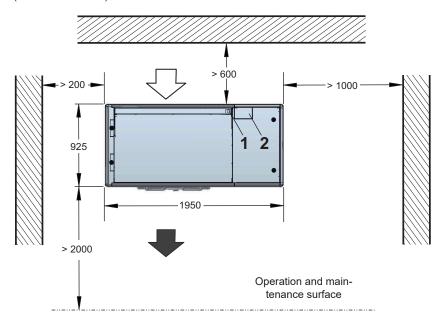
Hoval Belaria® twin A (17), Belaria® twin AR (17) (Dimensions in mm)



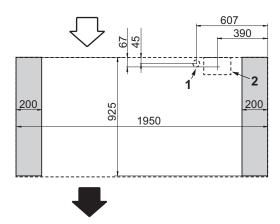




Hoval Belaria® twin A (24,32), Belaria® twin AR (24,32)


(Dimensions in mm)

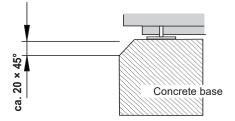
Space requirement for Hoval Belaria® twin A (17-32), Belaria® twin AR (17-32) (Dimensions in mm)



- 1 Condensate drain (Rp 1") with electric trace heating
- 2 Hydraulic and electrical connection

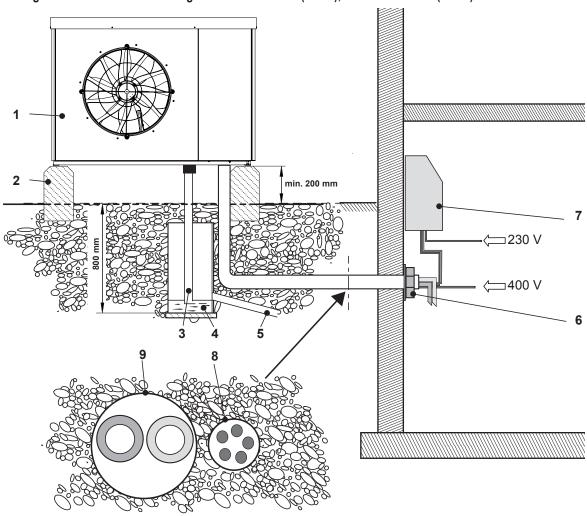
■ Dimensions

Base plan Hoval Belaria® twin A (17-32), Belaria® twin AR (17-32) (Dimensions in mm)



- 1 Condensate drain (Rp 1") with electric trace heating
- 2 Hydraulic and electrical connection

The condensate drain is located on the rear (suction side).


The concrete base must have a level surface the size of the Belaria® twin A/AR (1950 mm × 925 mm).

The base should have chamfered edges.

Dimensions

Configuration and connection diagram Belaria® twin A (17-32), Belaria® twin AR (17-32)

- 1 Belaria[®] twin A (17-32)/Belaria[®] twin AR (17-32)
- 2 Concrete base
- 3 Condensate drain (R 1") with electr. auxiliary heating (on site)
- 4 Possible variant with duct diameter / gravel bed
- 5 Discharge into the sewer system
- 6 Wall lead-through (hydraulic and electrical connections)
- 7 Terminal box/TopTronic® E controller
- 8 Empty tube for electrical connections outdoor unit

Necessary

		Main current	400 V/5-pole/configuration cross section on site
		Control current	230 V/3-pole/configuration cross section on site
		Bus line	24 V/2-pole/2 x 1.0 mm ² shielded
		Pump control CP	24 V/2-pole/2 x 1.0 mm ² shielded
	12	Fault contact CP	230 V/2-pole/2 x 1.5 mm ²
	mm²	Lock by energy supply company	230 V/2-pole/2 x 1,5 mm ²
1 cable	.5 r	Reset	230 V/1-pole/1 x 1.5 mm ²
	2 -	Heat generator block	230 V/1-pole/1 x 1.5 mm ²
	0	Collective fault	230 V/2-pole/2 x 1.5 mm ²
		Electric inset	230 V/1-pole/1 x 1.5 mm ²

Options

CP pump ON/OFF 230 V/2-pole/2 x 1.5 mm² (does not apply for pump control 0-10 V)

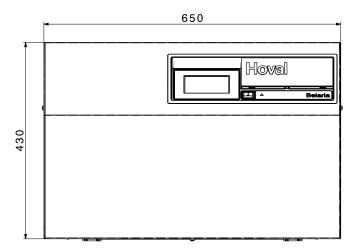
Fault contact for PLC 230 V/2-pole/2 x 1.5 mm²

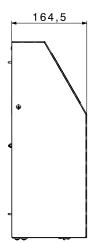
Flow rate meter 230 V/2-pole/2 x 1.5 mm²

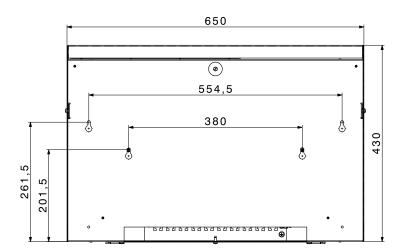
Electricity meter 230 V/2-pole/2 x 1.5 mm²

LISB cable for line recorder

USB cable for line recorder USB 2.0 extension cable active


9 Empty tube for hydraulic connections outdoor unit


Heating flow (17) R 1½"/(24,32) R 1½" Heating return (17) R 1½"/(24,32) R 1½" The piping from the boilerhouse to the heat pump must be configured by the installer. Connecting pipes are not included.



■ Dimensions

Electrical box for Hoval Belaria® twin A (17-32), Belaria® twin AR (17-32) (Dimensions in mm)

Description

Hoval Belaria® dual AR Air/water heat pump

- Air/water heat pump in compact design for outdoor installation
- · High energy efficiency
- Evaporator and refrigeration part are placed adjacent to one another. The refrigeration part is encapsulated with electrolytically galvanised, powder-coated and soundinsulated steel sheets. Colour light grey (RAL 7035)
- Covering made of sheet steel Colour anthrazite (DB 703)
- Refrigerant interim injection. This permits flow temperatures from 65 °C up to an outdoor temperature of -20 °C
- With large-area, multi-row aluminium/copper ribbed pipe evaporator and copper-brazed plate-type condenser made from stainless steel
- Two electronic expansion valves for the highest efficiency and operational reliability
- Two speed-controlled axial fans made from high-strength composite material with vanes as a compact unit for low energy consumption and the lowest noise level
- Two separate refrigeration circuits in one casing
- Two electronic starting current limiters including phase and phase-sequence monitoring
- With cooling function through inversion of cycle
- Filled with refrigerant R410A, wired up internally ready for connection
- Electrical box for wall mounting inside the building with built-in TopTronic® E controller
- The electrical box is not included in the scope of delivery and must be ordered in addition as an accessory.
- · Strainer ball valve installed
- Connecting hoses already fitted. Heating side pipework in the casing.

TopTronic® E controller

Control panel

- · 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizardService and maintenance function
- Fault message management
- Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- Integrated control functions for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management

Hoval Belari	a® dual AR	Heat output for A2W35		Cooling capacity for A35W7		
35 °C 55 °C	Type Refrigerant	Max. flow °C	Stage 1	Stage 2 W	Stage 1	
A** A*	(60) 2x R410A	65	25.1	50.3	24.6	49.2

Seal of approval FWS

The Belaria® dual AR (60) series are certified by the seal of approval of the authorisation commission of Switzerland

- Outdoor sensor
- · Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Rast5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
 1 module expansion:
 - Heating circuit module expansion or
- Universal module expansion or
- Heat balancing module expansion
- Can be networked with up to 16 controller modules in total:
 - Heating circuit/DHW module
 - Solar module
 - Buffer module
- Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls"

Condensate connection

- The discharge pipe must be configured with a sufficient slope and without a change of section
- The customer is responsible for providing the water connections and condensate discharge pipe outdoors and ensuring that they are protected against frost (see base plan)

Hydraulic connections

 Heating connections with flexible hoses downwards

Electrical connections

· Connection from below (see base plan)

Options

· Diffuser for sound reduction

Delivery

One-piece design. Compact unit wired-up internally ready for connection.

Recommended accessories

 Continuous, speed-controlled high-efficiency pump

Hoval Belaria® dual AR Air/water heat pump - 2-stage

Part No.

Air/water heat pump with cooling function for outdoor installation without electrical box.

Delivery

One-piece design. Compact unit wired-up internally ready for connection.

Belaria [®] dual AR		Heat output for A2W35		capacity 35W7
Туре	Stage 1	Stage 2	Stage 1	Stage 2
	k١	N	k۱	W
(60)	25 1	50.3	24 6	49 2

7016 825

The electrical box with built-in TopTronic® E controller must be ordered separately.

If the heat pump is ordered without electrical box, engineering must absolutely be performed by Hoval, otherwise it will not be taken into operation.

Notice

Corresponding charging pumps:

Hoval system pump set SPS-I with interface for pump control Type 0–10 V or PWM1

Stratos premium pump with IF module Stratos Ext. Off (0-10 V)

See "Circulating pumps"

Energy efficiency class

See Description

Notice

An energy buffer accumulator must be provided.

Matching energy buffer storage tanks see "Calorifiers"

Accessories

es Part No.

Electrical box

for wall installation in building interiors with built-in Hoval TopTronic® E controller Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- Option of extending by max. 1 module extension:
- heating circuit module extension or
- heat balancing module extension or
- universal module extension
- Option of networking with up to 16 controller modules (incl. solar

module)
Incl. outdoor sensor, immersion sensor
(calorifier sensor), contact sensor
(flow temperature sensor) and RAST 5
basic connector set

Sound attenuation cowl for compressor

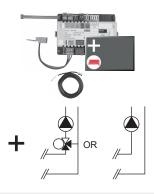
for Thermalia® dual (70) and Belaria® dual AR (60) for reducing the transmission of acoustic noise. Two sound attenuation cowls must be ordered for heat pumps with two compressors.

Number of compressors:
Thermalia® dual (70): 2 pieces
Belaria® dual AR (60): 2 pieces

6046 330

Set vibration-damping adjustable feet 55/65

for Belaria® dual AR (60) for reducing the transmission of solid-borne noise Set comprises 4 vibration damping feet, threaded rod and lock nut Material elastomer part: NR, black Material housing: galvanised steel, chromated 6040 854


Diffuser

for fan of Belaria® twin A, twin AR, dual AR for greater efficiency and lower noise by up to 3 dB(A) depending on circumstances 2056 705

2 diffusers are required for each heat pump.

Recommended accessory: High-efficiency pump with continuously variable speed control

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

Notice

The flow rate sensor set must be ordered as well.

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Flow rate sensor sets

Plastic housing

Size	Connection	Flow rate l/min	
DN 8	G ¾"	0.9-15	
DN 10	G ¾"	1.8-32	
DN 15	G 1"	3.5-50	
DN 20	G 1¼"	5-85	
DN 25	G 1½"	9-150	

Connection	Flow rate l/min	
G 1"	2-40	
G 1½"	14-240	
	Connection G 1"	Connection Flow rate I/min G 1" 2-40

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Part No.

6034 576

6037 062

6038 509 6038 510

6042 949 6042 950

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 6034 503 for controller modules and module expansion TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TTE-PS TopTronic® E buffer module 6037 057 TopTronic® E measuring module 6034 574 TTE-MWA TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 6037 069 comfort white comfort black 6037 070 Enhanced language package TopTronic® E 6039 253 one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HovalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 HovalConnect domestic starter Modbus 6049 501 6049 593 HovalConnect domestic starter KNX HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing WG-190 6035 563 Wall casing small WG-360 Wall casing medium 6035 564 WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 Wall casing large 6035 566 WG-510 BM Wall casing large with 6038 533 control module cut-out TopTronic® E sensors AF/2P/K Outdoor sensor 2055 889 TF/2P/5/6T 2055 888 Immersion sensor, L = 5.0 m ALF/2P/4/T Contact sensor, L = 4.0 m 2056 775 TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing System housing 182 mm 6038 551 System housing 254 mm 6038 552

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Bivalent switch

Accessories	

Protective pipe immersion sleeve SB280 1/2"

brass nickel-plated PN10, 280 mm

Trace heating tape

for heating a condensate drainage pipe (on site) and a condensate drip tray KWD with thermostat and microfuses Output: 40-80 W, 230 V Length: cable 1.5 m; heating tape 2 m

Screw-in electrical heating inset

for plants with energy buffer storage tank as emergency heating. Control set must be ordered.

He	eat output	Installation depth	
Туре	[kW]	[mm]	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.6	620	6049 559
EP 7.5	7.5	850	6049 560

Control set (switching contactor)

for installation in the wall-hanging electrical box.

Necessary for the control of an electrical heating inset.

Strainer PN16 B50-50-2"

Casing made of brass, PN 16 Max. operating temperature 110 °C Sieve made of stainless steel, size of mesh 0.5 mm

Further strainers

Weight: 2.32 kg

see "Various system components"

Sludge separator CS 50-2" with magnet

for flow rates of 5.0-8.0 m³/h for flow speed of 1.0 m/s Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm Connections made of brass G 2" Drain made of brass: hose connection Any inst. orientation - 360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 %

Circulation pumps, actuators, buffer storage tanks see separate brochures

Part No.

2018 837

6033 374

8 59

6033 403

2046 984

Part No.

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- · incl. seals and screw connections

DN	Conne Valve	ection Fitting	kvs	ൎV [m³/h] at ∆P 50 mbar	
40	G 21/4"	Rp 1½"	49	10.96	6045 77
50	G 2¾"	Rp 2"	73	16.32	6045 77

Туре	Voltage	Actuator run time

GLB341.9E 230 V / 50/60 Hz 2-/3-point 150 s 2070 331

Floating cone flow controller

2064 164

Operating range
3000–30,000 l/h, 0–80 °C
Nominal pressure 10 bar
DN 65 connection
Installation length 335 mm
Bistable Reed contact
Contact open without flow

For active cooling, the installation of a flow controller is mandatory!

Accessories

Expansion connector set

for the automatic heat pump ECR461. Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

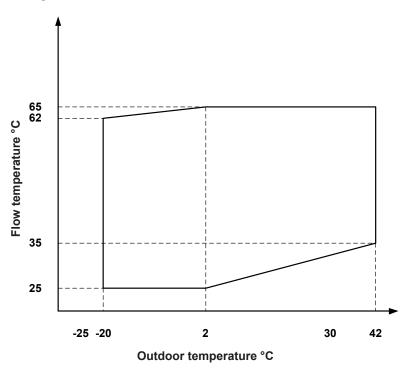
Part No.

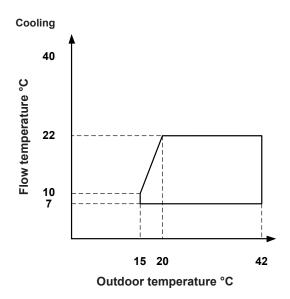
6032 509

Universal connector set

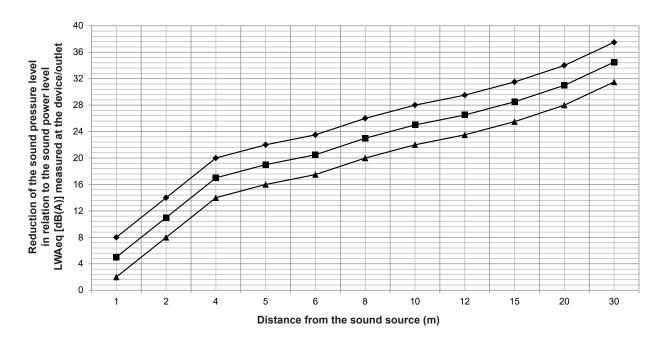
for automatic heat pump ECR461

- 3x 230V digital input 4x 230V outputs
- 6x low-voltage inputs
- 2x low-voltage outputs
- 1x ratio. input1x electr. expansion valve


Hoval Belaria® dual AR (60)


(,		
Seasonal coefficient of performance moderate climate 35 °C /55 °C	SCOP	4.0/3.2
Performance data (heating) in acc. with EN 14511		
Heat output A2W35	kW	50.3
·		
Heat output A7W35	kW	69.5
Heat output A-7W35	kW	45.5
Power consumption A2W35	kW	13.8
Power consumption A7W35	kW	15.6
Power consumption A-7W35	kW	14.6
Coefficient of performance A2W35	COP	3.6
Coefficient of performance A7W35	COP	4.5
Coefficient of performance A-7W35 Coefficient of performance A-7W35	COP	3.1
• Coefficient of performance A-7 ws5	COP	3.1
Performance data (cooling) in acc. with EN 14511		
Cooling capacity A35W18	kW	70.5
	kW	49.2
Cooling capacity A35W7 Cooling capacity A35W48 (nortial lead)		
Cooling capacity A35W18 (partial load)	kW	35.0
Power consumption A35W18	kW	21.3
Power consumption A35W7	kW	20.8
 Power consumption A35W18 (partial load) 	kW	16.6
Coefficient of performance A35W18	EER	3.3
Coefficient of performance A35W7	EER	2.4
Coefficient of performance A35W18 (partial load)	EER	3.3
Occincient of performance Access to (partial load)	LLIN	0.0
Sound data		
Sound power level at full load ¹⁾	dB (A)	67.0
Sound pressure level at 5 m (on facade) 1)	dB (A)	48.0
	• ,	42.0
Sound pressure level at 10 m (on facade) 1)	dB (A)	42.0
	15 (4)	20.0
Sound power level at partial load 1)	dB (A)	66.0
 Sound pressure level at 5 m (on facade) ¹⁾ 	dB (A)	47.0
 Sound pressure level at 10 m (on facade) ¹⁾ 	dB (A)	41.0
Hudwaylia data		
Hydraulic data	20	0.5
Maximum flow temperature	°C	65
 Nominal flow rate heating water 5K ΔT 	m³/h	12.9
 Nominal flow rate heating water 8K ΔT 	m³/h	7.3
 Condenser pressure drop at nominal flow rate 	kPa	6.0
Max. operating pressure on the heating side	bar	3
Flow/return connection heating	R	2" external thread
Built-in condensate drain	R	2" external thread
Built-in fan	13	2x owl-wing axial fan
	200 3 / lb	•
Nominal air quantity	m³/h	2x 11,000
Max./min. fan speed	rpm	700/175
Cooling technical data		
• Refrigerant		R410A
· ·		
Refrigeration circuits		2
Compressor stages		2
Refrigerant fill volume	kg	2x 14.8
Compressor oil fill volume		2x 3.3
Electrical data		
	A //L 1_	0 400/50
Compressor/heating element/fan connections	V/Hz	3~ 400/50
Control electrical connection	V/Hz	1~ 230/50
Starting current (compressor and fan)	Α	80,5
Compressor operating current	Α	2 x 21.61
Fan operating current (maximum value)	Α	2x 1.45
Fan power consumption (total)	W	2x 620
Main current fuse	A	63 A
Control current fuse	A	B 13
	A	B 13
Heating element fuse (up to 9 kW)	А	DIJ
Dimensions/Weight		
• Dimensions (H x W x D)	mm	1439 x 3272 x 895
• Weight		880
Wolgh	kg	000

The sound power levels apply in whisper mode. The values increase by +6 dB(A) in full-load operation or +4 dB(A) in partial load operation.


Graphs of operating range

Heating and how water

Diagram for rough calculation of the sound pressure level

- → Q=8 => Heat pump set up free-standing
- Q=4 => Heat pump set up against a wall
- Q=2 => Heat pump set up against 2 reflecting surfaces

Example 1:

The sound pressure level of the Belaria® dual AR (60) should be measured at a distance of 5 m if it is installed on a facade.

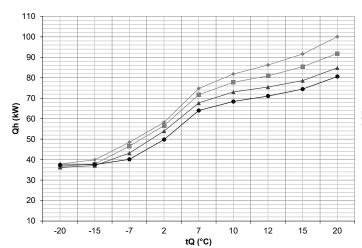
Sound power level - Sound pressure level reduction (5 m) = Sound pressure level (5 m) 67.0 dB(A) $^{1)}$ - 19 dB(A) = 48.0 dB(A) $^{1)}$

The sound pressure level of the Belaria® dual AR (60) should be measured at a distance of 10 m if it is installed on a facade.

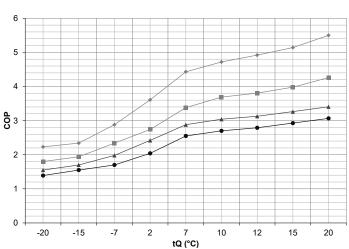
Sound power level - Sound pressure level reduction (10 m) = Sound pressure level (10 m) 67.0 dB(A) $^{1)}$ - 25 dB(A) = 42.0 dB(A) $^{1)}$

The sound power levels apply in whisper mode.

The values increase by +6 dB(A) in full-load operation or +4 dB(A) in partial load operation.

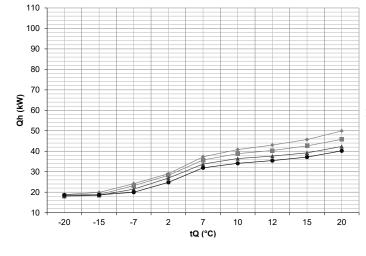

Performance data - heating

Maximum heat output allowing for defrosting losses

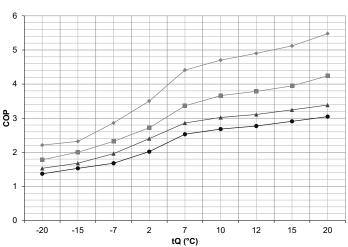

Hoval Belaria® dual AR (60)

Full load (2-stage)

Heat output



Coefficient of performance



Partial load (1-stage)

Heat output

Coefficient of performance

= Source temperature (°C)

Qh = Heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of performance in accordance with standard EN 14511

35 °C 45 °C

55 °C 62 °C

Performance data – heating

Hoval Belaria® dual AR

Data according to EN 14511

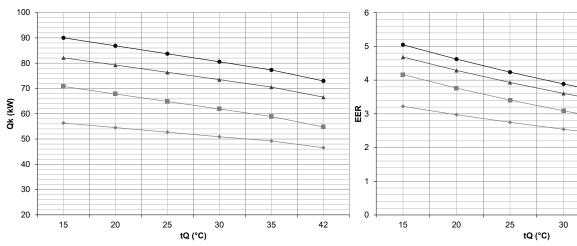
Type tFL °C	tQ °C	Qh kW	(60) Stage 1 P kW	СОР	Qh kW	(60) Stage 2 P kW	СОР
	-20	18.2	7.4	2.5	36.6	14.8	2.5
	-15	19.2	7.6	2.6	38.6	14.6	2.6
	-7	22.7	7.3	3.1	45.5	14.6	3.1
	2	25.1	6.9	3.6	50.3	13.8	3.6
35	7	34.6	7.8	4.4	69.4	15.6	4.5
	10	37.9	8.0	4.7	76.0	16.0	4.7
	12	40.0	8.1	4.9	80.2	16.2	4.9
	15	42.5	8.3	5.1	85.1	16.5	5.2
	20	46.4	8.4	5.5	93.0	16.8	5.5
	-20	18.0	8.9	2.0	36.2	17.7	2.0
	-15	19.0	8.6	2.2	38.2	17.8	2.1
	-7	22.4	8.8	2.6	45.0	17.5	2.6
	2	24.4	8.3	2.9	49.0	16.5	3.0
45	7	33.7	9.3	3.6	67.6	18.6	3.6
	10	36.7	9.6	3.8	73.5	19.1	3.6
	12	38.3	9.6	4.0	76.8	19.2	4.0
	15	40.3	9.7	4.2	80.8	19.3	4.2
	20	43.8	10.0	4.4	87.8	19.9	4.4
	-20	17.8	10.4	1.7	35.8	20.7	1.7
	-15	18.7	10.5	1.8	37.7	20.8	1.8
	-7	22.2	10.2	2.2	44.5	20.4	2.2
	2	23.8	9.7	2.5	47.7	19.2	2.5
55	7	32.8	10.9	3.0	65.8	21.7	3.0
	10	35.4	11.1	3.2	71.0	22.2	3.2
	12	36.6	11.2	3.3	73.4	22.2	3.3
	15	38.1	11.1	3.4	76.4	22.2	3.4
	20	41.1	11.5	3.6	82.6	23.0	3.6
	-20	18.4	12.0	1.5	37.0	23.8	1.6
	-15	19.0	11.6	1.6	38.2	23.1	1.7
	-7	20.6	11.1	1.9	41.4	22.0	1.9
	2	21.9	10.6	2.1	44.0	21.3	2.1
62	7	31.0	11.6	2.7	62.2	23.1	2.7
	10	33.2	11.7	2.8	66.5	23.4	2.6
	12	33.4	11.8	2.9	69.1	23.5	2.9
	15	36.1	11.8	3.1	72.4	23.5	3.1
	20	39.1	12.2	3.2	78.4	24.2	3.2

tFL = Heating flow temperature (°C)

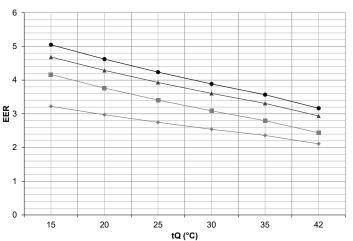
tQ = Source temperature (°C)

Qh = Heat output at full load (kW), measured in accordance with standard EN 14511 P = Power consumption for the overall unit (kW)

COP = Coefficient of performance in accordance with standard EN 14511

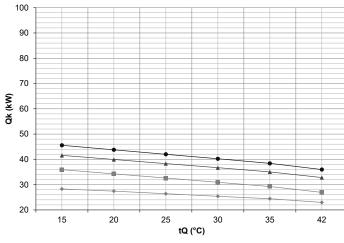

Performance data - cooling

Maximum cooling capacity

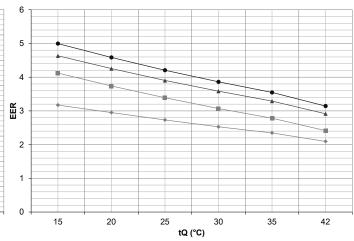

Hoval Belaria® dual AR (60)

Full load

Cooling capacity



Coefficient of performance



Partial load

Cooling capacity

Coefficient of performance

tQ = Source temperature (°C)

= Cooling capacity at full load (kW), measured in accordance with standard EN 14511

EER = Energy efficient rate for the overall unit in accordance with standard EN 14511

7 °C 12 °C 18 °C 22 °C

Performance data – cooling

Maximum cooling capacity

Hoval Belaria® dual AR (60)

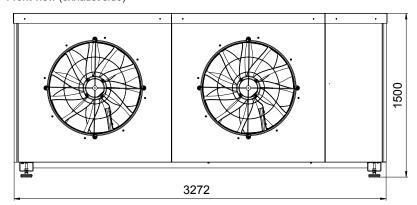
Data according to EN 14511

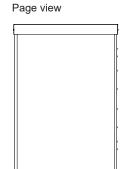
Туре			(60) Stage 1			(60) Stage 2	!
tFL	tQ	Qk	P	EER	Qk	Р	EER
°C	°C	kW	kW		kW	kW	
	15	28.3	8.9	3.2	56.3	17.5	3.2
	20	27.4	9.3	3.0	54.5	18.3	3.0
7	25	26.4	9.7	2.7	52.7	19.2	2.7
1	30	25.4	10.1	2.5	50.9	20.0	2.5
	35	24.5	10.4	2.3	49.2	20.9	2.4
	42	23.0	11.0	2.1	46.5	22.1	2.1
	15	33.0	8.8	3.7	65.0	17.2	3.8
	20	31.5	9.2	3.4	62.5	18.1	3.4
10	25	30.1	9.6	3.1	60.0	19.1	3.1
10	30	28.7	10.1	2.9	57.5	20.0	2.9
	35	27.3	10.5	2.6	55.0	21.0	2.6
	42	25.4	11.1	2.3	51.5	22.3	2.3
	15	35.9	8.7	4.1	70.8	17.0	4.2
	20	34.3	9.2	3.7	67.8	18.0	3.8
40	25	32.6	9.6	3.4	64.8	19.0	3.4
13	30	30.9	10.1	3.1	61.9	20.0	3.1
	35	29.3	10.5	2.8	58.9	21.1	2.8
	42	26.9	11.2	2.4	54.8	22.5	2.4
	15	38.8	8.9	4.4	76.5	17.3	4.4
	20	37.1	9.3	4.0	73.5	18.3	4.0
	25	35.5	9.7	3.6	70.6	19.2	3.7
15	30	33.8	10.2	3.3	67.7	20.2	3.3
	35	32.2	10.6	3.0	64.7	21.2	3.1
	42	29.9	11.2	2.7	60.7	22.6	2.7
	15	41.6	9.0	4.6	82.1	17.5	4.7
	20	40.0	9.4	4.3	79.2	18.5	4.3
4.0	25	38.3	9.8	3.9	76.4	19.4	3.9
18	30	36.7	10.2	3.6	73.5	20.4	3.6
	35	35.1	10.7	3.3	70.5	21.3	3.3
	42	32.8	11.3	2.9	66.6	22.7	2.9
	15	43.6	9.1	4.8	86.1	17.7	4.9
	20	41.9	9.5	4.4	83.1	18.6	4.5
00	25	40.2	9.9	4.1	80.0	19.6	4.1
20	30	38.5	10.3	3.7	77.0	20.6	3.7
	35	36.7	10.7	3.4	73.9	21.5	3.4
	42	34.4	11.4	3.0	69.8	22.9	3.1
	15	45.6	9.1	5.0	90.0	17.8	5.0
	20	43.8	9.6	4.6	86.9	18.8	4.6
00	25	42.0	10.0	4.2	83.7	19.8	4.2
22	30	40.2	10.4	3.9	80.5	20.7	3.9
	35	38.4	10.8	3.5	77.3	21.7	3.6
	42	36.0	11.5	3.1	73.0	23.1	3.2

tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)

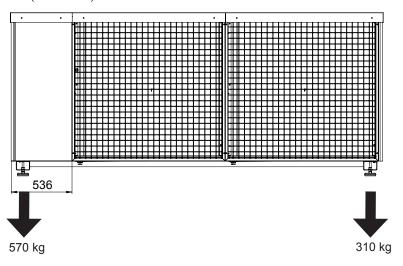
Qk = Cooling capacity at full load (kW), measured in accordance with standard EN 14511

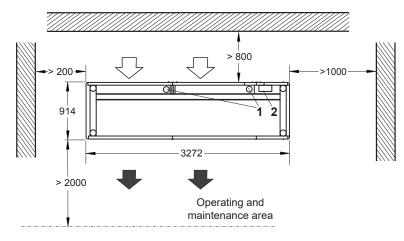

P = Power consumption for the overall unit (kW)


EER = Energy efficient rate for the overall unit in accordance with standard EN 14511

Hoval Belaria® dual AR (60)

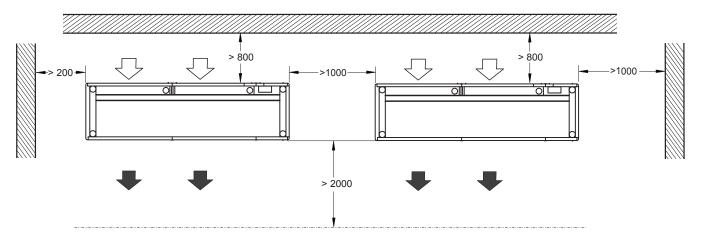
(Dimensions in mm)

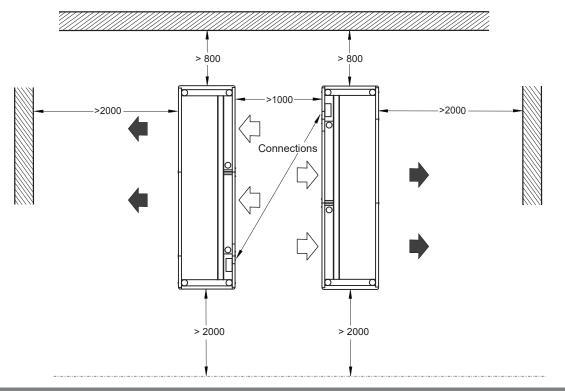

Front view (exhaust side)


895

Rear (suction side)

Space requirement


(Dimensions in mm)



- 1 Condensate drain with elec. auxiliary heating
- Phydraulic and electrical connection Foot Ø 100 mm

Minimum distances for cascade systems

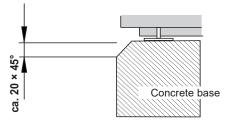
(Dimensions in mm)

Base design

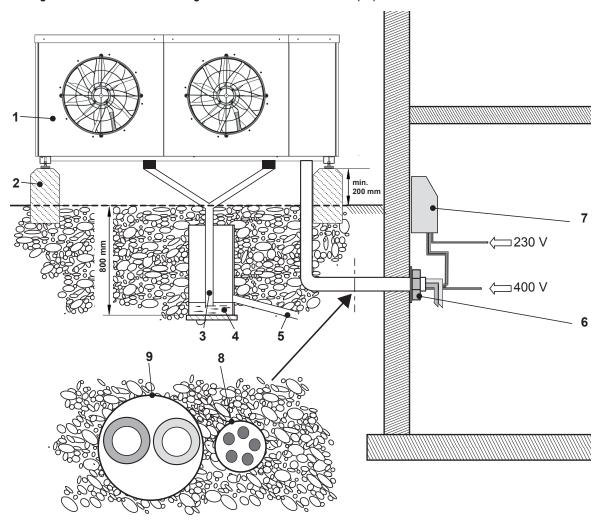
(Dimensions in mm)

1354
606
312
183
8
2
200

3150


3260

3272


- 1 Condensate drain with elec. auxiliary heating
- 2 Hydraulic and electrical connection

The condensate drain is located on the rear (suction side).

The concrete base must have a level surface the size of the Belaria® dual AR (60). The base should have chamfered edges.

Configuration and connection diagram for the Belaria® dual AR (60)

- 1 Belaria® dual AR (60)
- 2 Concrete base
- 3 Condensate drain with elec. auxiliary heating (provided by customer)
- 4 Possible variant with duct (Ø 300 mm)
- 5 Discharge into the sewer system
- 6 Wall lead-through (hydraulic and electrical connections)
- 7 Electrical box/TopTronic® E controller
- 8 Empty tube for electrical connections for outdoor unit

Necessary

	Main current	400 V/5-pole/configuration cross section on site
	Control current	230 V/3-pole/configuration cross section on site
	Bus line	24 V/2-pole (see wiring diagram)
	Pump control CP	24 V/2-pole (see wiring diagram)
12	Fault contact CP	230 V/2-pole (see wiring diagram)
e nm²	Lock by energy supply company	230 V/2-pole (see wiring diagram)
1 cable x 1,5 mr	Reset	230 V/1-pole (see wiring diagram)
2 -	Heat generator block	230 V/1-pole (see wiring diagram)
0	Collective fault	230 V/2-pole (see wiring diagram)
~	Electric inset	230 V/1-pole (see wiring diagram)

Options

CP pump ON/OFF

(does not apply for pump control 0-10 V)

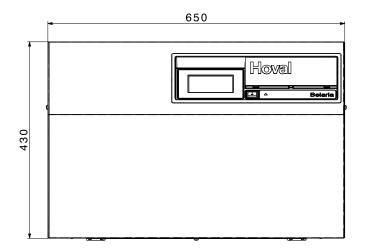
Fault contact for PLC

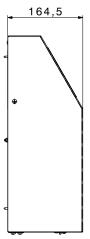
Flow rate meter

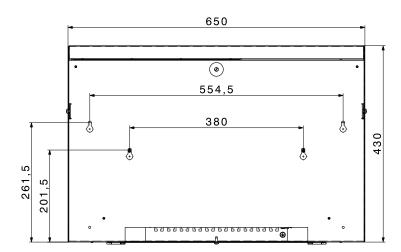
Electricity meter

USB cable for line recorder

USB 2.0 extension cable active


9 Empty tube for hydraulic connections for outdoor unit


Heating flow R 2"
Heating return R 2"


The piping from the boiler room to the heat pump must be configured by the installer. Connecting pipes are not included.

Electrical box for Hoval Belaria® dual AR (60)

(Dimensions in mm)

Description

Hoval UltraSource T comfort Hoval UltraSource T compact Modulating heat pump system for heating and cooling in the living area. UltraSource T compact (8,13/200) version additionally with hot water storage tank.

UltraSource T comfort

- · Compact floor-mounted brine/water and water/water heat pumps with enclosed scroll compressor controlled by inverter
- · UltraSource T comfort (8) with rotary compressor controlled by inverter UltraSource T comfort (13,17) with scroll capsule compressor controlled by inverter
- Casing made from painted, galvanised sheet steel. Colour flame red/brown red (RAL 3000/RAL 3011)
- Acoustically insulated casing with triple mounting of the compressor
- Evaporator and plate-type condenser made of stainless steel/CU
- Integrated components:
 - One speed-regulated high-efficiency pump each on the heating and brine sides
- Flow sensor/flow meter or heat meter
- 3-way changeover ball cock for heating/ domestic hot water (see accessories for domestic hot water set)
- Brine side diaphragm pressure expansion tank mounted
- · Safety set consisting of safety valve, automatic air vent and pressure gauge
- (see accessories)
- Diaphragm pressure expansion tanks see "System components"
- Sensor set consisting of outdoor sensor, flow sensor and domestic hot water sensor included in the scope of delivery
- TopTronic® E controller installed
- With corresponding separating plate heat exchanger in the primary circuit can also be used as water/water heat pump
- Hydraulic connections
 - Heating connections R 1" on left or right side. See accessories for connecting
- Brine connection R 1" on left or right side See accessories for connecting hoses
- · Electrical connections at rear

UltraSource T compact

- · Compact floor-mounted brine/water and water/water heat pumps with enclosed scroll compressor controlled by inverter
- UltraSource T compact (8/200) with rotary compressor controlled by inverter UltraSource T compact (13/200) with scroll capsule compressor controlled by inverter
- Casing made from painted, galvanised sheet steel. Colour flame red/brown red (RAL 3000/RAL 3011)
- Acoustically insulated casing with triple mounting of the compressor
- Evaporator and plate-type condenser made of stainless steel/CU
- · Integrated calorifier 200 litres (can be divided for easier transport into the building; weight 1294 x 770 x 602)
- Enamel painted calorifier with PU hard-foam insulation energy efficiency class A, load profile XL. Maintenance flange and magnesium protection anode built in

UltraSource T comfort (8,17) UltraSource T compact (8/200) available starting July 2019

Indoor unit UltraSource T comfort

Indoor unit UltraSource T compact

Hoval UltraSource T comfort (8-17)
Hoval UltraSource T compact (8,13/200

	ource T compa	` '		Heat output 1)			
Water/water	Brine/water		Type	B0W35	W10W35		
35 °C 55 °C	C 35 °C 55	°C		kW	kW		
A*** A***	Λ···•	∄ A***	(8)	1.8-7.8	2.5-9.8		
	A***	∥ A***	(8/200)	1.8-7.8	2.5-9.8		
	A***	∥ A***	(13)	2.9-13.3	3.5-13.3		
	A***	Ⅱ A*** 🏝 A	(13/200)	2.9-13.3	3.5-13.3		
	A***	 	(17)	4.3-17.6	5.7-21.5		

Energy efficiency class of the compound system with control

1) Modulation range

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of ≤ 0.23.

Seal of approval FWS

The UltraSource T series is certified by the CH certification commission.

- Integrated components:
 - One speed-regulated high-efficiency pump each on the heating and brine sides
 - Flow sensor/flow meter or heat meter
- E-heating element 1 to 6 kW
- Brine side diaphragm pressure expansion tank mounted
- Safety set consisting of safety valve, automatic air vent and pressure gauge (see accessories)
- Diaphragm pressure expansion tanks see "System components"
- Sensor set consisting of outdoor sensor, flow sensor and domestic hot water sensor included in the scope of delivery
- TopTronic® E controller installed
- With corresponding separating plate heat exchanger in the primary circuit can also be used as water/water heat pump
- Internally decoupled against solid-borne noise and can be connected directly
- Hydraulic connections
 - Heating connections R 1" top
- Hot and cold water connections Rp 3/4" top · Brine connection R 1" on right or left side
- · Electrical connections at top

Brine/water application

- Integrated brine pressure monitoring
- Brine safety set consisting of safety valve, automatic air vent and pressure gauge see accessories
- Brine connection on right or left side (comfort version: connection hoses see accessories)
- Hydraulic connection brine/water version see engineering

Water/water application

- For water/water applications, an intermediate circuit is required see engineering
- Safety heat exchanger set consisting of heat exchanger, safety group and diaphragm expansion tank see accessories
- Ground water pump kit see accessories
- Flow monitor see accessories
- Hydraulic connection water/water version see engineering

Cooling

- UltraSource T comfort and compact can be equipped with a passive cooling set (see accessories)
- Hydraulic version of the cooling functions see engineering

Hoval UltraSource T comfort (8-17) Hoval UltraSource T compact (8/200), (13/200)

Brine/water and water/water heat pump

Hoval

Description

TopTronic® E controller

Control panel

- · 4.3-inch colour touchscreen
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating states
- · Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- · Service and maintenance function
- · Fault message management
- · Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- · Integrated control functions for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 DHW charging circuit
 - Bivalent and cascade management
- Outdoor sensor
- · Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- Rast5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:
- Module expansion heating circuit or
- Universal module expansion or
- Heat balancing module expansion
- Can be networked with up to 16 controller modules in total:
- Heating circuit/DHW module
- Solar module
- Buffer module
- Measuring module

Number of additional modules that can be installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

For further information about the TopTronic® E, see "Controls" section

Delivery

- One-piece design. Compact unit wired-up internally ready for connection, supplied fully packaged
- · Sensor set supplied loose

Brine/water heat pump Hoval UltraSource T comfort Hoval UltraSource T compact

Part No.

Modulating brine/water heat pump system for indoor installation with built-in TopTronic® E controller

UltraSource T comfort (8,17) available starting July 2019

Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 DHW charging circuit
- Bivalent and cascade management
- Can be optionally expanded with max. 1 module expansion:
 - Module expansion heating circuit or
 - Module expansion heat balancing or
 - Module expansion universal
- Can be optionally networked with up to 16 controller modules in total (incl. solar module)

Delivery

- One-piece design. Compact unit wired-up internally ready for connection, supplied fully packaged
- · Sensor set supplied loose

Hoval UltraSource T comfort

Heat pump system Working medium R 410A Max. flow temperature 65 °C

Туре	Heat o	utput 1)	
	B0W35	W10W35	
	kW	kW	
(8)	1.8-7.8	2.5-9.8	
(13)	2.9-13.3	3.5-13.3	
(17)	4.3-17.6	5.7-21.5	

¹⁾ Modulation range

for UltraSource T comfort (8,13) Consisting of: Flexible connection hoses for heating and brine side insulated 1" L = 1.0 m, can be shortened on one side

6046 175

7016 666 7016 672 7016 678

Hose set

for UltraSource T comfort (17)
Consisting of:
flexible connection hoses for
heating side insulated 1"
L = 1.0 m, can be shortened on one side
And insulated for brine side 1 1/4"
L = 1.5 m

6046 176

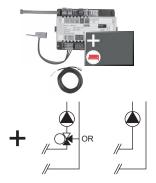
Available starting July 2019

Energy efficiency class see "Description"

Hoval UltraSource T compact Heat pump system with integrated calorifier Working medium R 410A Max. flow temperature 65 °C

Туре	Heat o	utput 1)
	B0W35	W10W35
	kW	kW
(8/200)	1.8-7.8	2.5-9.8
(13/200)	2.9-13.3	3.5-13.3

1) Modulation range


No hose set necessary

Part No.

UltraSource T compact (8/200) available starting July 2019

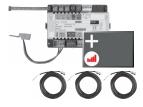
7016 667 7016 673

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:


- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer

incl. assembly material 1x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/hot water module for implementing the following functions:

- 1 heating/cooling circuit without mixer or
- 1 heating/cooling circuit with mixer each incl. energy balancing

incl. assembly material 3x contact sensor ALF/2P/4/T, L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. assembly material

Can be installed in: Boiler control, wall housing, control panel

Further information see "Controls" section - "Hoval TopTronic® E module expansions" chapter

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

Part No.

6034 576

6037 062

6034 575

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 for controller modules and module expansion 6034 503 TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TopTronic® E buffer module TTE-PS 6037 057 TopTronic® E measuring module 6034 574 TTE-MWA TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 6037 069 comfort white comfort black 6037 070 Enhanced language package TopTronic® E 6039 253 one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HovalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 HovalConnect domestic starter Modbus 6049 501 HovalConnect domestic starter KNX 6049 593 HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing WG-190 Wall casing small 6035 563 WG-360 Wall casing medium 6035 564 WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 Wall casing large 6035 566 Wall casing large with WG-510 BM 6038 533 control module cut-out TopTronic® E sensors AF/2P/K Outdoor sensor 2055 889 TF/2P/5/6T Immersion sensor, L = 5.0 m 2055 888 Contact sensor, L = 4.0 m ALF/2P/4/T 2056 775 TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing System housing 182 mm 6038 551 System housing 254 mm 6038 552 Bivalent switch 2061 826

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Heating accessories

Part No.

Pressure expansion tanks

see "Various system components"

Safety set SG15-1"

Suitable up to max. 50 kW complete with safety valve (3 bar) Pressure gauge and automatic air vent with cut off valve Connection: 1" internal thread

641 184

Strainers

Weight: 1.21 kg

see "Various system components"

Sludge separator CS 25-1" with magnet

for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 1"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %

2063 735

Sludge separator CS 32-11/4" with magnet

for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s
Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm
Connections made of brass G 11/4"
Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C
Operating pressure max.: 10 bar Glycol proportion max.: 50 %
Weight: 1.37 kg

2063 736

Strainer PN 16 B50-25-1" Casing brass, PN 16

Connections Rp 1"
Operating temperature max.: 110 °C
Sieve made of stainless steel
Mesh size 0.5 mm

2046 978

Strainer PN 16 B50-32-11/4"

Casing brass, PN 16 Connections Rp 11/4" Operation temperature r

Operation temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm 2046 980

Connection set AS32-2/ H

for compact mounting
of all required fittings
of a direct circuit
consisting of:
2 thermometer ball valves
Wall bracket included separately
Connection T-piece DN 32
in the return flow for connecting the
sludge separator CS 32 bottom and
the expansion tank on the side
on connection set
installation option
for an overflow valve
incl. non-return valve

Part No.

6039 793

Bypass valve DN 32 (11/4")

for the installation in a HA group DN 32 Setting range 0.6-1.5 bar Max. flow rate: 1.5 m³/h with self-sealing screw connection for mounting between flow and return ball valve

6014 849

Warm water set

for UltraSource B comfort C,
UltraSource T comfort
Consisting of:
Motor drive for installed
changeover valve
Includes distance wave and flexible
connection hose insulated 1"
L = 1.0 m

6046 181

Titanium impressed current anode

for UltraSource B compact C, UltraSource T compact as cathodic protection for enamelled calorifier 6046 662

Screw-in electric immersion heater

for plants with buffer storage tank as emergency heating.

Heat ou	tput	Install. length	
Туре	[kW]	[mm]	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.9	620	6049 559
EP 7.5	7.5	850	6049 560

Brine accessories

Part No.

Connection hoses brine already included in hose set for UltraSource T comfort

Instantaneous water heater kit DN 50

6044 070

from ready electrical box for electrical protection incl. assembly fittings. for combination with all screw-in heating inset EP. Screw-in heaters must be ordered separately.

Safety group for brine circuit SI-Gr.

2015 354

Retaining bar incl. safety valve, pressure gauge, air vent and connection fittings for expansion chambers

Strainer PN 16 B50-25-1"

2046 978

Casing brass, PN 16 Connections Rp 1" Operating temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm

Strainer PN 16 B50-32-11/4"

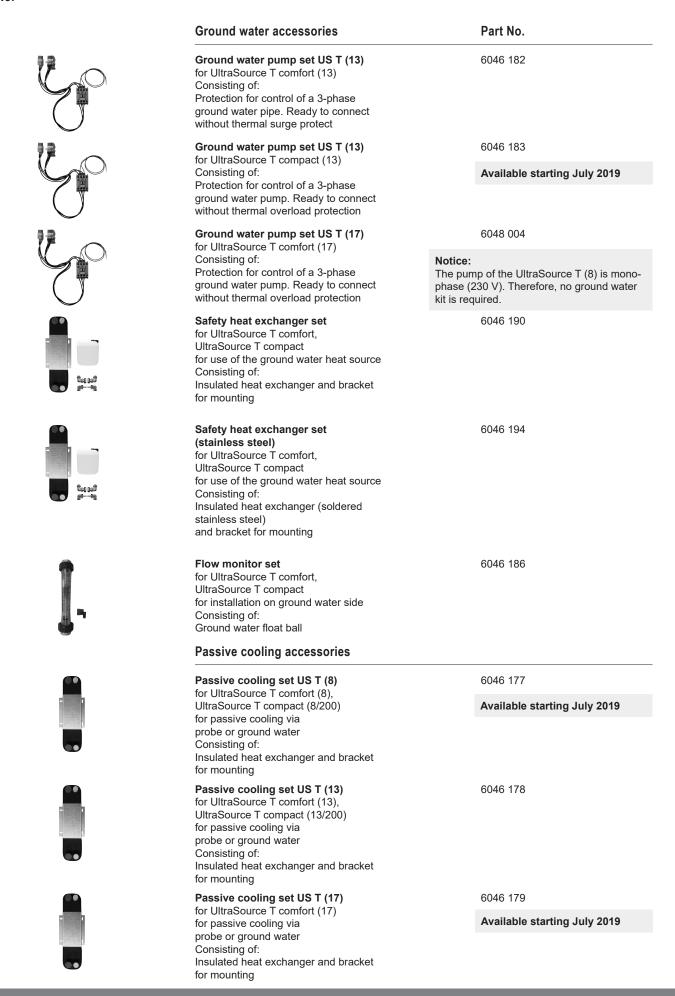
2046 980

Casing brass, PN 16 Connections Rp 11/4" Operation temperature max.: 110 °C Sieve made of stainless steel Mesh size 0.5 mm

Brine filling station in compact design DN 25

6037 537

with shut-off valves, filter and EPS insulation.
Application temperatures -20°C to +60°C Frost protection max. 50 %
Connections DN 25 G 1″, kvs 12.5
Max. operating pressure 1.0 MPa (10 bar) Dirt screen integrated


Brine filling station in compact design DN 32

with shut-off valves, filter and EPS insulation.
Application temperatures -20°C to +60°C Frost protection max. 50 %
Connections DN 32 G 11/4", kvs 22
Max. operating pressure 1.0 MPa (10 bar)

Dirt screen integrated

6033 364

Hoval UltraSource T comfort (8-17) Hoval UltraSource T compact (8/200,13/200)

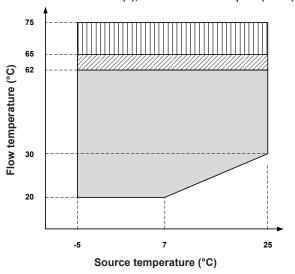
Туре		(8)	(13)	(17)	(8/200)	(13/200)
Brine/water application B0W35	1.05/550	/	A /A	/		/
 Energy efficiency class of the compound system with control Energy efficiency class load profile XL 	1 35/55°C	A+++/A+++ -	A+++/A+++ -	A+++/A+++ -	A+++/A+++ A	A+++/A+++ A
Seasonal coefficient of performance moderate climate	SCOP	5.4/4.2	5.5/4.2	5.9 / 4.3	5.4/4.2	5.5/4.2
35 °C/55 °C	0001	0.1/1.2	0.0/ 1.2	0.07 1.0	0. 1/ 1.2	0.0/ 1.2
Water/water application W10W35						
 Energy efficiency class of the compound system with control 	l 35/55°C	A+++/A+++	A+++/A+++	A+++/A+++	A+++/A+++	A+++/A+++
Energy efficiency class load profile XL		-	-	-	Α	Α
 Seasonal coefficient of performance moderate climate 35 °C/55 °C 	SCOP	7.9/6.3	8.0/5.6	8.0/5.9	7.9/6.3	8.0/5.6
Performance data in acc. with EN 14511						
Heat output B0W35	kW	4.1	6.6	11.42	4.1	6.6
Power consumption B0W35	kW	0.87	1.3	2.26	0.87	1.3
Coefficient of performance B0W35	COP	4.71	5	5.05	4.71	5
Heat output W10W35	kW	5.55	8.6	15.24	5.55	8.6
Power consumption W10W35	kW	0.85	1.3	2.36	0.85	1.3
Coefficient of performance W10W35	COP	6.53	6.3	6.46	6.53	6.3
Sound data in acc. with EN 12102						
Sound power level (nominal)	dB(A)	45	41	44	45	41
Sound power level (maximum)	dB(A)	51	47	55	51	47
Hydraulic data	00	20	00	22	00/0=	00/07
 Max. flow temperature (without/with screw-in electrical heating inset) 	°C	62	63	62	62/65	63/65
Max. operating pressure source side	bar	3	3	3	3	3
Max. operating pressure source side Max. operating pressure on the heating side	bar	3	3	3	3	3
Heating flow and return connection	R	1"	1"	1"	1"	1"
Connections source side	R	1"	1"	5/4"	1"	1"
Nominal flow rate and pressure drop brine/water						
Heating (dT = 5K)						
- Max. flow rate B5/W35	m³/h	1.6	2.3	3.3	1.6	2.3
- Nominal flow rate	m3/h	0.7	1.2	2	0.7	1.2
Pressure dropResidual overpressure (max. pump speed)	kPa kPa	7 67	9 76	35 44	7 67	9 76
Heat source (dT = 3K)	кіа	01	70	44	01	70
- Nominal flow rate	m3/h	0.94	1.6	2.8	0.94	1.6
- Pressure drop	kPa	9	9	22	9	9
- Residual overpressure	kPa	65	71	52	65	71
Nominal flow rate and pressure drop water/water						
Heating (dT = 5K)Max. flow rate W10/W35	m³/h	1.7	2.3	3.7	1.7	2.3
- Nominal flow rate	m3/h	0.94	1.5	2.65	0.94	1.5
- Pressure drop	kPa	12	14	61	12	14
- Residual overpressure	kPa	67	72	20	67	72
Heat source (dT = 3K)						
- Nominal flow rate	m3/h	1.36	2.1	4	1.36	2.1
- Pressure drop	kPa kPa	5 70	6 74	10 19	5 70	6 74
- Residual overpressure max. pump speed	кга	70	74	19	70	74
Cooling technical data Refrigerant		R410A	R410A	R410A	R410A	R410A
Compressor/stages		1-modulating	1-modulating	1-modulating	1-modulating	1-modulating
Refrigerant fill volume	kg	2.3	3	3.8	2.3	3
Compressor oil fill volume	I	0.35	0.74	1	0.35	0.74
Type of compressor oil		DAPHNE	Emkarate	DAPHNE	DAPHNE	Emkarate
		HERMETIC	RL32 - 3MAF	HERMETIC	HERMETIC	RL32 - 3MAF
		OIL FV50S		OIL FVC68D	OIL FV50S	
Electrical data	\//Ы~	1, 220 / 50	24 400 / 50	2v 400 / 50	1, 220 / 50	24 400 / 50
Electrical connection compressor Electrical connection electric immersion heater	V/Hz V/Hz	1x 230 / 50	3x 400 / 50	3x 400 / 50	1x 230 / 50 1~230/50	3x 400 / 50 3x 400 / 50
Licentical confidential discurs infinite Stoff fielder	V/1 IZ	-	-	-	3~400/50	JA 400 / 30
Control electrical connection	V/Hz	1x 230 / 50	1x 230 / 50			
Compressor operating current max.	A	15.8	9	14.79	15.8	9
Electric immersion heater operating current max. Storting current.	A	- -15 0	-	- ~14.70	13	13
Starting current Output factor	A -	<15.8 0.99	<9 0.97	<14.79 0.95	<15.8 0.99	<9 0.97
Main current fuse	A	16	13	16	16	13
- Type	, ,	C,K	C,K	C,K	C,K	C,K
Control current fuse	Α	13	13	13	13	13
						_

Type - Type - Fuse electric immersion heater - Type	Α	(8) B.Z 13 B.Z	(13) B.Z 13 B.Z	(17) B.Z - -	(8/ 200) B.Z 13 B.Z	(13/200) B.Z 13 B.Z
Dimensions/weight Dimensions (H x W x D) Tilting dimension Weight Minimum sizes of installation room 1)	mm mm kg m3	1253x620x760 - 165 5.2	1253x620x760 - 170 6.8	1253x620x760 - 196 8.6	1950x602x770 2150 265 5.2	1950x602x770 2150 270 6.8
 Hot water storage tank Storage capacity Max. operating pressure Storage tank temperature max. Maximum storage tank temperature with electric immersion heater Output capacity at 46 °C draw-off temperature - heat pum (=Tsp =58°) ²⁾ Output capacity at 40 °C draw-off temperature - heat pum (=Tsp=58°) ²⁾ 		- - - - -	- - - -	- - - - -	192 10 55 65 260 315	192 10 55 65 260 315

Using a residual current circuit breaker RCCB type B, I∆n ≥ 300 mA is recommended. Country-specific regulations must be observed.

¹⁾ If the installation room is smaller than the required minimum size. it must be designed as a machine room in accordance with EN 378.

 $^{^{\}rm 2)}~$ 12 °C cold water temperature/58 °C storage tank temperature

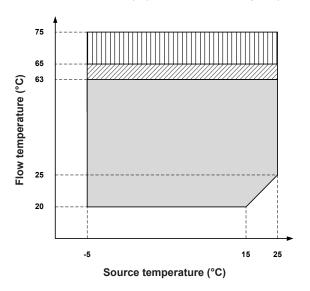

Hoval

■ Technical data

Diagram of area of application

Heating and hot water

UltraSource T comfort (8), UltraSource T compact (8/200)

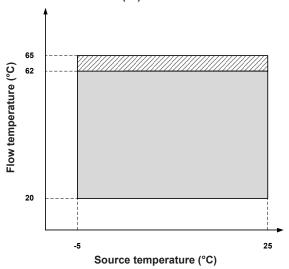


Application area heating heat pump (UltraSource T comfort C and compact C)

Extended application area heating heat pump including electric immersion heater (only UltraSource T compact)

Extended application area domestic hot water heat pump including electric immersion heater (only UltraSource T compact)

UltraSource T comfort (13), UltraSource T compact (13/200)



Application area heating heat pump (UltraSource T comfort C and compact C)

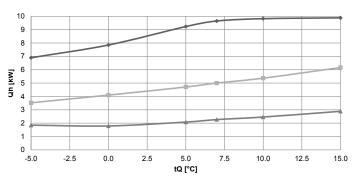
Extended application area heating heat pump including electric immersion heater (only UltraSource T compact)

Extended application area domestic hot water heat pump including electric immersion heater (only UltraSource T compact)

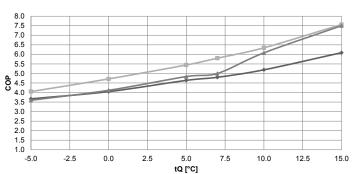
UltraSource T comfort (17)

Application area heating heat pump (UltraSource T comfort C and compact C)

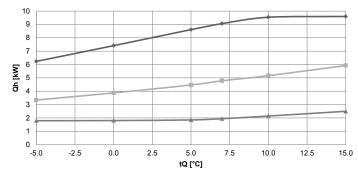
Extended application area domestic hot water heat pump including electric immersion heater (only UltraSource T compact)

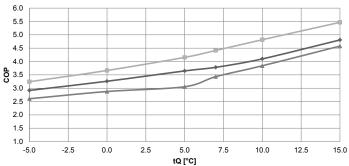


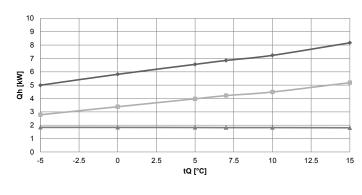
Performance data – heating

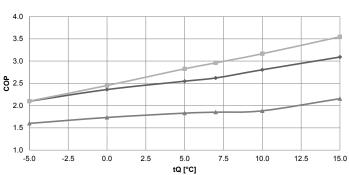

Maximum heat output

Hoval UltraSource T comfort (8), compact (8/200) with R410A Data according to EN 14511


Heat output - t_{FL} 35 °C


Coefficient of performance - t_{FL} 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - t_{FL} 45 °C

Heat output - $t_{\rm FL}$ 62 °C

Coefficient of performance - t_{FL} 62 °C

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol (Antifrogen N)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

Minimum output

Performance data - heating

Hoval UltraSource T comfort (8), compact (8/200) with R410A

Data according to EN 14511

Type Heat source			Ма	ximum out	put	No	ominal outp	ut	Minimum output		
Boiler	Medium t1	tQ	Qh	Р	COP	Qh	Р.	COP	Qh	P	COP
tFL (°C)		°C	kW	kW		kW	kW		kW	kW	
		-5	6.90	1.88	3.67	3.52	0.87	4.05	1.85	0.51	3.59
	Brine	0	7.85	1.94	4.05	4.10	0.87	4.71	1.79	0.43	4.12
35	Dille	5	9.23	1.99	4.64	4.71	0.86	5.44	2.08	0.43	4.84
33		7	9.65	2.01	4.80	5.00	0.86	5.80	2.27	0.45	5.00
	Water	10	9.82	1.89	6.34	5.37	0.85	6.34	2.46	0.40	6.08
	vvaler	15	9.88	1.62	7.56	6.16	0.81	7.56	2.89	0.39	7.50
		-5	6.23	2.14	2.92	3.34	1.03	3.24	1.79	0.69	2.60
	Brine	0	7.41	2.27	3.26	3.88	1.06	3.66	1.80	0.63	2.88
45	Dillie	5	8.61	2.36	3.65	4.47	1.08	4.15	1.85	0.61	3.05
43		7	9.06	2.40	3.78	4.78	1.08	4.41	1.94	0.57	3.43
	Water	10	9.54	2.33	4.10	5.16	1.07	4.81	2.14	0.56	3.84
	vvater	15	9.60	2.00	4.81	5.92	1.08	5.47	2.50	0.55	4.58
	Brine	-5	5.92	2.29	2.59	3.19	1.13	2.82	1.84	0.81	2.26
		0	7.04	2.46	2.87	3.77	1.16	3.23	1.83	0.73	2.50
50		5	8.18	2.57	3.18	4.35	1.19	3.65	1.82	0.69	2.64
30		7	8.61	2.64	3.27	4.64	1.19	3.89	1.85	0.63	2.92
	Water	10	9.16	2.60	3.52	5.00	1.19	4.20	2.03	0.62	3.27
	vvalei	15	9.36	2.23	4.20	5.71	1.21	4.71	2.37	0.60	3.95
		-5	5.36	2.16	2.48	3.12	1.21	2.57	1.80	0.92	1.96
	Brine	0	6.31	2.27	2.78	3.61	1.25	2.89	1.85	0.87	2.11
55	Dille	5	7.17	2.35	3.05	4.24	1.28	3.32	1.85	0.80	2.32
55		7	7.53	2.40	3.14	4.51	1.29	3.48	1.86	0.78	2.39
	Water	10	8.02	2.41	3.33	4.85	1.28	3.77	1.79	0.72	2.49
	vvalei	15	9.14	2.46	3.71	5.62	1.33	4.23	2.19	0.72	3.05
		-5	5.00	2.38	2.10	2.78	1.32	2.10	1.84	1.15	1.60
	Brine	0	5.81	2.46	2.36	3.38	1.38	2.45	1.84	1.06	1.73
62	DIME	5	6.56	2.57	2.55	3.98	1.41	2.83	1.83	1.00	1.83
02		7	6.85	2.61	2.62	4.22	1.43	2.96	1.82	0.98	1.85
	Water	10	7.23	2.58	2.80	4.49	1.42	3.16	1.82	0.97	1.88
	vvalci	15	8.17	2.64	3.09	5.19	1.46	3.55	1.81	0.84	2.16

tFL = Heating flow temperature (°C)

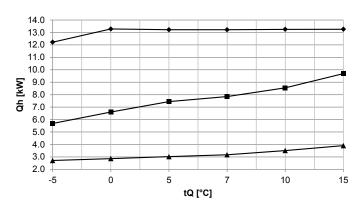
tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol (Antifrogen N)

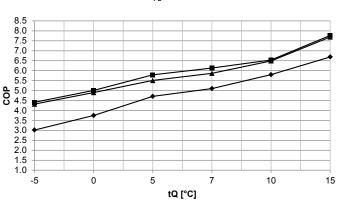
P = Power consumption, overall unit (kW)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

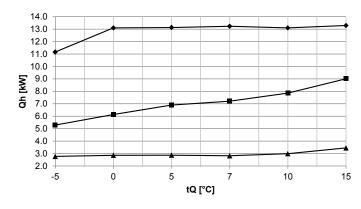
Observe daily power interruptions! see project planning

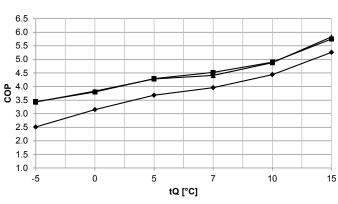

Performance data – heating

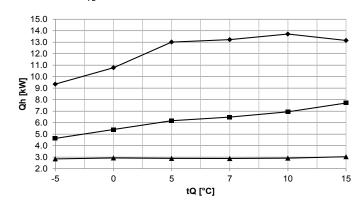
Maximum heat output

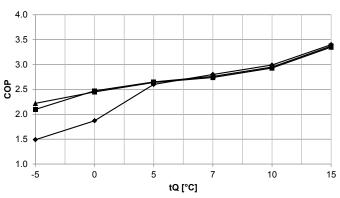

Hoval UltraSource T comfort (13), compact (13/200) with R410A

Data according to EN 14511


Heat output - t_{FL} 35 °C


Coefficient of performance - t_{FL} 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - t_{FL} 45 °C

Heat output - t_{FL} 62 °C

Coefficient of performance - t_{FL} 62 °C

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

Maximum output

Nominal output

→ Minimum output

Performance data - heating

Hoval UltraSource T comfort (13), compact (13/200) with R410A

Data according to EN 14511

Type	Heat source		Ma	ximum out	put	No	ominal outp	out	Minimum output		
Boiler	Medium t1	tQ	Qh	Р	COP	Qh	Р.	COP	Qh	P	COP
tFL (°C)		°C	kW	kW		kW	kW		kW	kW	
		- 5	12.2	4.1	3.0	5.7	1.3	4.4	2.7	0.6	4.3
	Brine	0	13.3	3.5	3.8	6.6	1.3	5.0	2.9	0.6	4.9
35	Dille	5	13.2	2.8	4.7	7.4	1.3	5.8	3.0	0.6	5.5
33		7	13.2	2.6	5.1	7.9	1.3	6.1	3.2	0.5	5.9
	Motor	10	13.3	2.3	5.8	8.6	1.3	6.5	3.5	0.5	6.5
	Water	15	13.3	2.0	6.7	9.7	1.3	7.8	3.9	0.5	7.7
		-5	11.2	4.4	2.5	5.3	1.5	3.4	2.8	8.0	3.4
	Brine	0	13.1	4.2	3.2	6.1	1.6	3.8	2.9	0.8	3.8
45	Dille	5	13.1	3.6	3.7	6.9	1.6	4.3	2.9	0.7	4.3
43		7	13.2	3.3	4.0	7.2	1.6	4.5	2.8	0.6	4.4
	Motor	10	13.1	3.0	4.4	7.9	1.6	4.9	3.0	0.6	4.9
	Water	15	13.3	2.5	5.3	9.0	1.6	5.8	3.5	0.6	5.8
	Brine	-5	10.6	4.8	2.2	5.1	1.7	3.0	2.9	0.9	3.2
		0	12.5	4.6	2.7	5.9	1.7	3.4	2.9	8.0	3.5
50		5	13.3	4.1	3.3	6.6	1.8	3.8	3.0	0.7	4.0
30		7	13.2	3.8	3.5	6.9	1.8	4.0	2.9	0.7	4.1
	Water	10	13.1	3.4	3.9	7.6	1.8	4.3	2.9	0.7	4.5
	vvalei	15	13.3	2.9	4.6	8.7	1.8	4.9	3.2	0.6	5.0
		-5	10.1	5.7	1.8	4.9	1.9	2.6	2.9	1.0	2.8
	Brine	0	11.9	5.2	2.3	5.8	1.9	3.0	3.0	1.0	3.0
55	Dille	5	13.2	4.5	3.0	6.4	2.0	3.3	2.9	0.9	3.4
55		7	13.2	4.2	3.2	6.7	2.0	3.4	2.8	0.8	3.5
	Water	10	13.1	3.8	3.5	7.2	2.0	3.7	2.8	8.0	3.8
	vvalei	15	13.2	3.3	4.1	8.2	2.0	4.2	3.1	0.7	4.4
		-5	9.4	6.3	1.5	4.6	2.2	2.1	2.9	1.3	2.2
	Brine	0	10.8	5.8	1.9	5.4	2.2	2.5	2.9	1.2	2.5
62	DITTE	5	13.0	5.0	2.6	6.2	2.3	2.7	2.9	1.1	2.6
02		7	13.2	4.7	2.8	6.5	2.4	2.8	2.9	1.1	2.7
	Water	10	13.7	4.4	3.0	6.9	2.4	3.0	2.9	1.0	2.9
	vvalci	15	13.2	3.9	3.4	7.7	2.3	3.4	3.0	0.9	3.4

tFL = Heating flow temperature (°C)

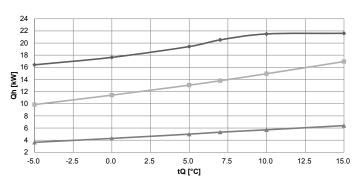
tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol (Antifrogen N)

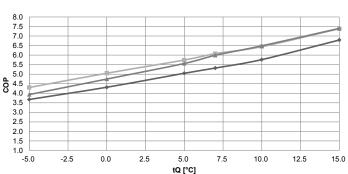
P = Power consumption, overall unit (kW)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

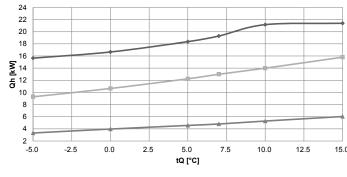
Observe daily power interruptions! see project planning

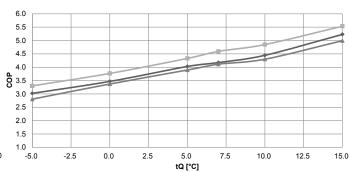

Performance data - heating

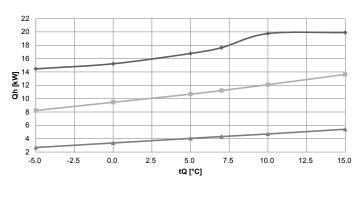
Maximum heat output

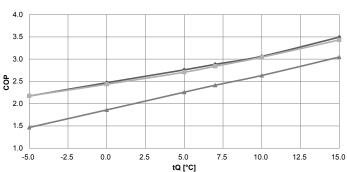

Hoval UltraSource T comfort (17) with R410A

Data according to EN 14511


Heat output - t_{FL} 35 °C


Coefficient of performance - t_{FL} 35 °C


Heat output - t_{FL} 45 °C


Coefficient of performance - t_{FL} 45 °C

Heat output - t_{FL} 62 °C

Coefficient of performance - t_{FL} 62 °C

tFL = Heating flow temperature (°C)

tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol (Antifrogen N)

COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

→ Maximum output

Nominal output

→ Minimum output

Performance data - heating

Hoval UltraSource T comfort (17) with R410A

Data according to EN 14511

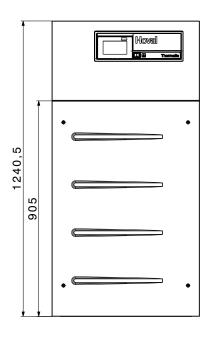
Type	Heat source		Maximum output			Nominal output			Minimum output		
Boiler	Medium t1	tQ	Qh	Р	COP	Qh	Р.	COP	Qh	Р.	COP
tFL (°C)		°C	kW	kW		kW	kW		kW	kW	
35	Brine	-5	16.41	4.47	3.67	9.86	2.29	4.30	3.65	0.93	3.93
		0	17.64	4.09	4.32	11.42	2.26	5.05	4.29	0.91	4.74
		5	19.42	3.85	5.05	13.06	2.28	5.74	4.99	0.90	5.56
		7	20.52	3.86	5.32	13.79	2.27	6.08	5.32	0.89	5.99
	Water	10	21.50	3.73	5.76	14.94	2.32	6.44	5.71	0.88	6.49
		15	21.60	3.18	6.79	16.95	2.30	7.38	6.40	0.86	7.40
45	Brine	-5	15.64	5.18	3.02	9.28	2.29	4.30	3.65	0.93	3.93
		0	16.66	4.80	3.47	11.42	2.26	5.05	4.29	0.91	4.74
		5	18.37	4.56	4.03	13.06	2.28	5.74	4.99	0.90	5.56
		7	19.29	4.62	4.17	13.79	2.27	6.08	5.32	0.89	5.99
	Water	10	21.17	4.76	4.45	14.94	2.32	6.44	5.71	0.88	6.49
		15	21.39	4.09	5.23	16.95	2.30	7.38	6.40	0.86	7.40
50	Brine	-5	15.16	5.58	2.72	8.82	3.06	2.88	3.07	1.29	2.38
		0	16.18	5.22	3.10	10.22	3.11	3.29	3.76	1.30	2.90
		5	17.75	5.04	3.52	11.83	3.13	3.78	4.44	1.30	3.41
		7	18.69	5.05	3.70	12.51	3.14	3.99	4.71	1.30	3.62
	Water	10	20.72	5.29	3.92	13.49	3.21	4.20	5.12	1.38	3.70
		15	20.96	4.60	4.56	15.29	3.20	4.78	5.81	1.37	4.24
55	Brine	-5	15.00	5.88	2.55	8.70	3.28	2.65	2.87	1.49	1.92
		0	15.84	5.51	2.88	10.17	3.39	3.00	3.55	1.53	2.32
		5	17.27	5.34	3.23	11.49	3.38	3.40	4.23	1.48	2.85
		7	18.14	5.37	3.38	12.15	3.38	3.59	4.50	1.48	3.05
	Water	10	20.20	5.57	3.63	12.96	3.49	3.72	4.87	1.52	3.20
		15	20.34	4.85	4.19	14.66	3.48	4.21	5.61	1.50	3.73
62	Brine	-5	14.46	6.66	2.17	8.22	3.78	2.17	2.68	1.83	1.47
		0	15.23	6.16	2.47	9.46	3.88	2.44	3.36	1.81	1.86
		5	16.77	6.08	2.76	10.67	3.94	2.71	4.05	1.79	2.26
		7	17.63	6.11	2.88	11.22	3.95	2.84	4.32	1.79	2.41
	Water	10	19.75	6.45	3.06	12.10	3.97	3.04	4.71	1.79	2.63
		15	19.91	5.70	3.49	13.63	3.97	3.43	5.42	1.78	3.05

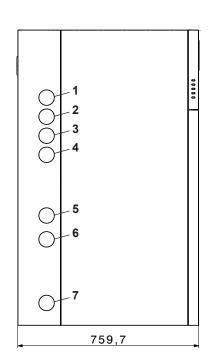
tFL = Heating flow temperature (°C)

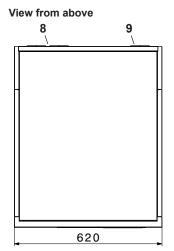
tQ = Source temperature (°C)

Qh = Heat output (kW), measured in accordance with standard EN 14511 with 25 % ethylene glycol (Antifrogen N)

P = Power consumption, overall unit (kW)


COP = Coefficient of performance for the overall unit in accordance with standard EN 14511

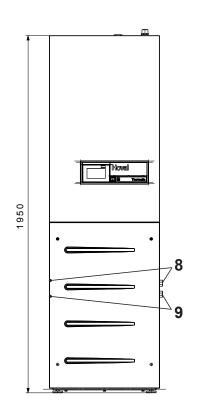

Observe daily power interruptions! see project planning

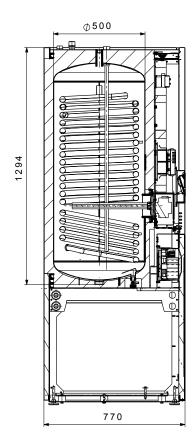


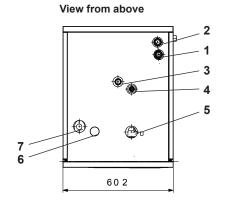
Hoval UltraSource T comfort (8-17) Indoor unit

(Dimensions in mm)

Connections (1-7) on either the left or right side

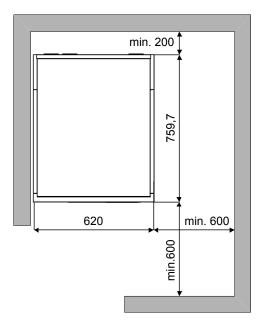

- Free
- 2 Brine outlet 1"
 - Flow heating 1"
- 4 Flow hot water charging 1"
- 5 Brine inlet 1"
- 6 Free


3


- 7 Return heating 1"
- 8 Cable feed-in main current
- 9 Cable feed-in sensors

Hoval UltraSource T compact (8,13/200) Indoor unit with calorifier

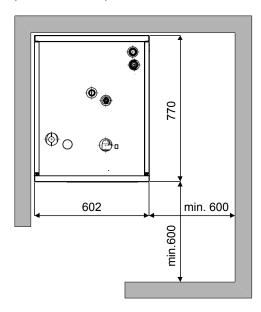
(Dimensions in mm)



- 1 Flow heating 1"
- 2 Return heating 1"
- 3 Hot water connection 3/4"
- 4 Cold water connection 3/4"
- 5 Cable feed-in sensors
- 6 Circulation connection 3/4"
- 7 Cable feed-in main current
- 8 Brine entry (connection right or left) 1"
- 9 Brine exit (connection right or left) 1"

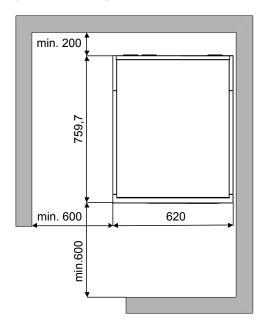
Space requirement

Hoval UltraSource T comfort (8-17) left Indoor unit


(Dimensions in mm)

A gap of at least 200 mm must be guaranteed at the rear for the electrical connection.

Hoval UltraSource T compact (8,13/200) Indoor unit


(Dimensions in mm)

Due to the need for access to the 3-way changeover ball cock for heating and domestic hot water, a gap of at least 600 mm must be guaranteed on the right side.

Hoval UltraSource T comfort (8-17) right Indoor unit

(Dimensions in mm)

Engineering

Requirements and directives

The general requirements and directives listed in the Chapter Engineering apply.

Set-up

- The UltraSource T comfort and UltraSource T compact must be installed in a room protected against frost, by an approved specialist company.

 Room temperature must be between 5 °C and 25 °C.
- If the installation room is smaller than the required minimum size, it must be designed as a machine room in accordance with the provisions of EN 378.
- Installation in wet rooms, dusty rooms or rooms with a potentially explosive atmosphere is not permitted.
- To minimise vibration and noise inside the building, heat pumps should be isolated as well as possible from the building structure. For example heat pumps should never be installed on lightweight ceilings/floor. In the case of floating screed, a recess should be cut in the screed and the impact sound insulation around the heat pump.
- The connections for the brine flow and return in the UltraSource T comfort and in the UltraSource T compact can be on either the left or right side.
- The connections for the heating flow and return in the UltraSource T comfort can be on either the left or right and in the Ultra-Source T compact they are on the top.
- The connections for hot and cold water as well as hot water circulation are located on top of the UltraSource T compact.
- The applicable laws, regulations and standards have to be observed, in particular EN 378 Parts 1 and 2 as well as BGR 500.
- A gap of at least 600 mm must be observed for maintenance work on the front and, depending on where the brine lines are connected, on the right or left side, of the heat pump.
- False flow rates as a result of incorrect dimensions of the pipework, incorrect fittings or improper pump operation can cause damage to the heat pump.

The installation of a magnetic sludge separator is mandatory.

Installation on heating side

- All pertinent laws, regulations and standards for building heating system pipework and for heat pump systems must be complied with.
- It is imperative that a strainer and a sludge separator are installed in the heating return upstream from the heat pump.
- The safety and expansion devices for closed heating systems must be provided in accordance with EN 12828.
- Dimensioning of the pipework must be done according to the required flow rates.
- Ventilation possibilities must be provided at the highest point and drainage possibilities at the lowest points of the connecting lines.
- To prevent energy losses, the connecting lines must be insulated with suitable material.

Installation on brine side

- The connection fittings for the brine pipe of the UltraSource T comfort are located in the heat pump and can be pulled out either to the left or right through the openings provided.
- The connection fittings for the brine pipe of the UltraSource T compact are located on the right side when delivered. If necessary, the brine line connections can also be taken out on the left side of the heat pump. The connections for the brine pipe are changed over on site. If the brine pipe connections are changed to the left, the hose of the brine entry line (upper line) must be shortened from 450 mm to 285 mm. Once the connection line has been shortened, it must be insulated again with Armaflex.

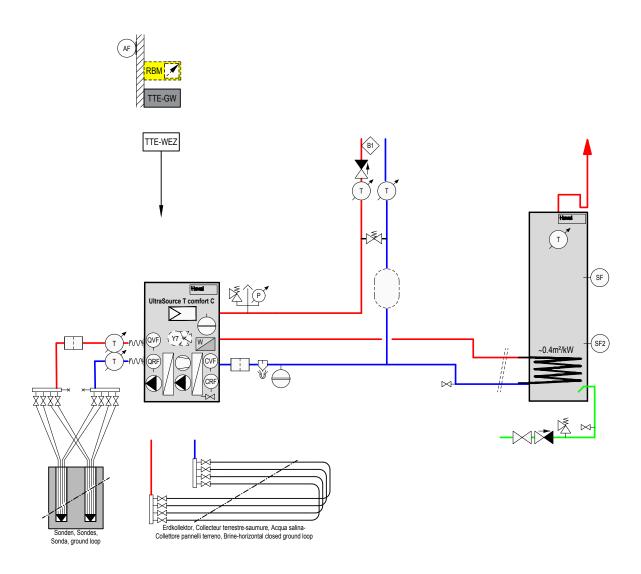
Connection on drinking water side

- The hydraulic connection is made according to the information in the corresponding diagrams from Hoval.
- According to the Drinking Water Regulation and DIN 50930-6, the domestic hot water storage tank is suitable for normal drinking water (pH value > 7.3).
- The connection piping can be made using galvanised pipes, stainless steel pipes, copper pipes or plastic pipes.
- The connections must be made pressuretight.
- The safety devices tested for the components in accordance with DIN 1988 and DIN 4753 must be installed in the cold water pipe.
- The 10 bar operating pressure stated on the rating plate is not allowed to be exceeded. Install a pressure reducing valve if necessary.
- A suitable water filter must be installed in the cold water pipe.
- A water softener should be installed if the water is hard.

Electrical connections

- The electrical connection must be carried out by a qualified technician and registered with the responsible energy supply company.
 The relevant electrical installation company is responsible for ensuring that electrical connection is carried out in accordance with standards and that safeguard measures are put in place.
- The mains voltage at the connection terminals of the heat pump must be 400 V or 230 V +/-10 %. The dimensions of the connection line must be checked by the electrical company carrying out the work.
- A fault-current circuit breaker is recommended.
 A "zeroing TN-S" can be used instead of the RCCB type B. Country-specific requirements must be complied with. If the "fault-current circuit breaker" safeguard measure is implemented nevertheless by the electrical company, a separate fault-current circuit breaker is recommended for the heat pumps.
- This residual-current circuit breaker must be of the all-current-sensitive type B (IΔN ≥ 300 mA). The specified RCCB types apply to the heat pump regardless of externally connected components (refer to assembly instructions, data sheets).
- Owing to the starting currents that occur, circuit breakers with a type "C" or "K" tripping characteristic are to be used for the main circuit
- For the control circuit and additional electric heating (if present), circuit breakers with a type "B" or "Z" tripping characteristic are sufficient.
- The electrical connecting and feeder lines must be copper cables.
- Please refer to the wiring diagram for electrical details.

For other engineering notices and guidelines regarding probes, flat plate collectors or ground water use, see "Engineering"


■ Examples

UltraSource T comfort

Brine/water and water/water heat pump with

- Earth probes
- 1 direct circuit

Hydraulic schematic BBBFE010

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

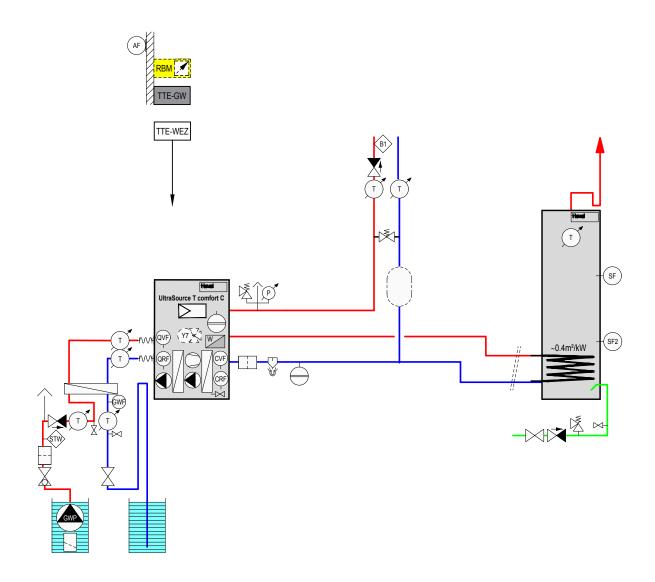
TTE-WEZ TopTronic® E basic module heat generator (installed)

B1 Flow temperature monitor (if required)
AF Outdoor sensor

AF Outdoor sensor
SF Calorifier sensor
SF2 Calorifier sensor 2

Option
RBM TopTronic® E room control module
TTE-GW TopTronic® E Gateway

Switching valve


■ Examples

UltraSource T comfort

Brine/water and water/water heat pump with

- Water/water indirect use
- 1 direct circuit

Hydraulic schematic BBBFE030

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TopTronic® E basic module heat generator (installed) TTE-WEZ

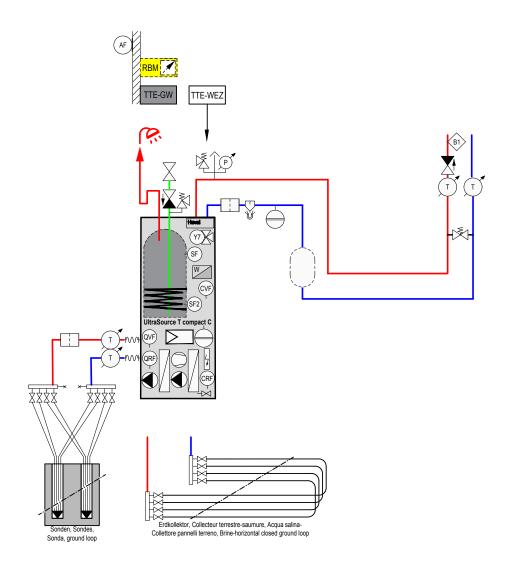
В1 Flow temperature monitor (if required)

AF SF Outdoor sensor Calorifier sensor SF2 Calorifier sensor 2

Option

RBM

TopTronic® E room control module TopTronic® E Gateway TTE-GW Switching valve Υ7


■ Examples

UltraSource T compact

Brine/water and water/water heat pump with

- Integrated calorifier
- Earth probes
- 1 direct circuit

Hydraulic schematic BBBEE010

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.
- With underfloor heating, a flow temperature monitor must be installed.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install pockets to prevent single-pipe gravity circulation!

TTE-WEZ TopTronic® E basic module heat generator (installed)

В1 Flow temperature monitor (if required)

AF SF Outdoor sensor Calorifier sensor SF2 Calorifier sensor 2 Switching valve

Option

TopTronic® E room control module TopTronic® E Gateway RBM

TTE-GW

Description

Hoval Thermalia® comfort Brine/water-water/water heat pump

- Brine/water-water/water heat pump in compact design with high energy efficiency for indoor installation. Extremely low-noise with triple-mounted construction
- Stable framework of galvanised sheet steel; with removable, powder-coated, sound-insulated side panels, colour brown red (RAL 3011)
- Sound-insulated plastic hood, colour flame red (RAL 3000)
- Safety valve incl. hose installed at the side of the heating
- Comprising a spiral (Scroll) compressor
- · Electronic expansion valve
- Plate heat exchanger system of stainless steel
- Electronic starting current limiter with rotary field/phase monitoring.
- Speed-controlled, highly efficient heating and brine pump
- 3-way switch ball valve for heating and hot water
- · Integrated brine pressure monitoring
- Brine pressure gauge and pressure valve incl. hose
- Brine expansion vessel 18 litres
 Hydraulic connections with flexible hoses,
 removable to the left, right or top:
 comfort (6-13): 1" 2x 1 m top.

1" 2x 1.5 m bottom

comfort (17): 1 1/4" 2x 1.52 m top, 2x 1 m bottom

comfort H (7,10):1" 1x 1 m resp. 1x 0.85 m top, 2x 1.75 m bottom

- · Sound-insulating floor mat
- Refrigerant Thermalia® comfort (6-17) with R410A Thermalia® comfort H (7,10) with R134a
- · Heat pump wired ready
- Temperatures and pressures of brine and refrigeration circuit available
- TopTronic® E controller installed

							неат	output
Therm	alia® cor	nfort				Max. flow	B0W35	W10W35
Water/v	water	Brine/w	<i>r</i> ater	Type	Refrigerant	°C	kW	kW
35 °C	55 °C	35 °C	55 °C					
A***	A***	A**	A ⁺	(6)	R410A	62	5.8	7.1
A***	A***	A***	A**	(8)	R410A	62	7.6	9.6
A***	Α***	Α***	A**	(10)	R410A	62	10.6	12.7
A***	Α***	Α	A**	(13)	R410A	62	13.4	17.5
Α***	A***	A***	A**	(17)	R410A	62	17.2	22.3
Α***	A***	A***	A**	H (7)	R134a	67	6.5	9.1
A***	A***	A***	A**	H (10)	R134a	67	9.1	12.8

Energy efficiency class of the compound system with control

The built-in high-efficiency pumps fulfil the Ecodesign requirements of 2015 with an EEI of ≤ 0.23.

Seal of approval FWS

The Thermalia® comfort (6-17), comfort H (7,10) series are certified by the seal of approval of the authorisation commission of Switzerland

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- Configurable start screen
- Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- · Service and maintenance function
- Fault message management
- · Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water loading circuit
- bivalent and cascade management
- · Outdoor sensor
- · Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Rast-5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:module expansion heating circuit or
- module expansion heat accounting or
- module expansion universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module or
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Electrical connections

Electrical connection selectable between lateral (left/right) or top

Delivery

Heat pump on pallet, plastic hood and floor plate separately packed. Hose sleeves, clamps and sensor set included separately

Option

- Drive motor for 3-way switch ball valve with flexible hose 1"
- internet connection

Brine/water-water/water heat pump Hoval Thermalia® comfort

Part No.

Brine/water-water/water heat pump with hermetic spiral (scroll) compressor for indoor installation with flexible connection pipes and built-in Hoval TopTronic® E control

Control functions integrated for

- 1 heating circuit with mixer
- 1 heating circuit without mixer
- 1 hot water loading circuit
- bivalent and cascade management
- · Can be optionally expanded by max. 1 module expansion:
 - module expansion heating circuit or
 - module expansion universal
 - module expansion heat accounting
- · Can be optionally networked with a total of up to 16 controller modules (incl. solar module)

Delivery

- Compact device internally wired ready for installation
- · Heat pump on pallet, plastic hood and floor plate separately packed
- Hose sleeves, clamps and sensor set included separately
- Flexible hoses (removable to the left, right or top)

Hoval Thermalia® comfort

Refrigerant R410A

Flow temperature max. 62 °C

i nermaliaº	пеаі	ουιραι	
comfort	with B0W35	with W10W35	
Туре	kW	kW	
(6)	5.8	7.1	7014 715
(8)	7.6	9.6	7014 716
(10)	10.6	12.7	7014 717
(13)	13.4	17.5	7014 718
(17)	17.2	22.3	7014 719

Energy efficiency class see Description

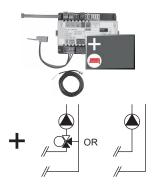
Hoval Thermalia® comfort H Refrigerant R134a

Flow temperature max. 67 °C

Thermalia®	Heat		
comfort	with B0W35	with W10W35	
Type	kW	kW	
(7)	6.5	9.1	7014 721
(10)	9.1	12.8	7014 722

Suitable plate heat exchanger

see chapter "plate heat exchanger for Hoval Thermalia®



Accessories Part No.

Sound attenuation cowl for compressor

for reducing the transmission of noise. In heat pumps with two compressors, it is mandatory for two sound attenuation cowls to be ordered.

Thermalia® comfort Type	Number of compressors	
(6)	1	2069 694
(8)	1	2069 695
(10)	1	2069 695
(13)	1	2069 696
(17)	1	2069 697
H (7)	1	2069 698
H (10)	1	2069 699

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

Notice

The flow rate sensor set must be ordered as well.

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in:

Boiler control, wall housing, control panel

Flow rate sensor sets

Plastic housing

Size	Connection	Flow rate I/min
DN 8	G ¾"	0.9-15
DN 10	G ¾"	1.8-32
DN 15	G 1"	3.5-50
DN 20	G 1¼"	5-85
DN 25	G 1½"	9-150

Brass housing Size	Connection	Flow rate I/min
DN 10	G 1"	2-40
DN 32	G 1½"	14-240

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

fer to the Hoval System Technology Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Part No.

6034 576

6037 062

0001 002

6042 949 6042 950

6034 575

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories	for TopTronic® E	Part No.	
Supplementa	ry plug set		
	lle heat generator (TTE-WEZ)	6034 499	
	nodules and module expansion	6034 503	
TTE-FE HK	·		
TTE-HK/WW	controller modules TopTronic® E heating circuit/	6034 571	
IIE-HK/VVVV	hot water module	0034 37 1	
TTE-SOL	TopTronic® E solar module	6037 058	
TTE-PS	TopTronic® E buffer module	6037 057	
TTE-MWA	TopTronic® E measuring module	6034 574	
TopTronic® E	room control modules		
TTE-RBM	TopTronic® E room control modules		
	easy white	6037 071	
	comfort white	6037 069	
	comfort black	6037 070	
Enhanced lan	guage package TopTronic® E	6039 253	
	equired per control module		
	he following languages:		
HU, CS, SL, R	O, PL, TR, ES, HR, SR, JA, DA		
HovalConnec			
	domestic starter LAN	6049 496	
	domestic starter WLAN	6049 498	
	commercial starter LAN	6049 495	
HovalConnect SMS remote c	commercial starter WLAN	6049 497	
_	onent SMS remote control unit	6018 867 6022 797	
	interface modules		
GLT module 0-		6034 578	
HovalConnect	domestic starter Modbus	6049 501	
HovalConnect	domestic starter KNX	6049 593	
HovalConnect	commercial starter Modbus	6049 500	
HovalConnect	commercial starter KNX	6049 502	
TopTronic® E	•		
WG-190	Wall casing small	6035 563	
WG-360	Wall casing medium	6035 564	
WG-360 BM	Wall casing medium with	6035 565	
WG-510	control module cut-out Wall casing large	6035 566	
WG-510 WG-510 BM	Wall casing large Wall casing large with	6038 533	
**O-010 DIVI	control module cut-out	0000 000	
TopTronic® E	sensors		
AF/2P/K	Outdoor sensor	2055 889	
TF/2P/5/6T	Immersion sensor, L = 5.0 m	2055 888	
ALF/2P/4/T	Contact sensor, L = 4.0 m	2056 775	
TF/1.1P/2.5S/6	T Collector sensor, L = 2.5 m	2056 776	
System housi	=		
	System housing 182 mm	6038 551	
	System housing 254 mm	6038 552	
	Divolent suitely	2004 002	
	Bivalent switch	2061 826	

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Accessories

Part No.

Protective pipe immersion sleeve SB280 $\frac{1}{2}$ "

brass nickel-plated PN10, 280 mm 2018 837

Accessories for water heating

Hot water set

for Thermalia® comfort (6-17), comfort H (7,10) Consisting of: Motor drive LRA 230A for integrated switching valve and flexible connecting hose 1" 6026 251

Screw-in electrical heating inset

for plants with energy buffer storage tank as emergency heating.

Туре	Heat output [kW]	Installation depth [mm]	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.9	620	6049 559
EP 7.5	7.5	850	6049 560

Expansion connector set

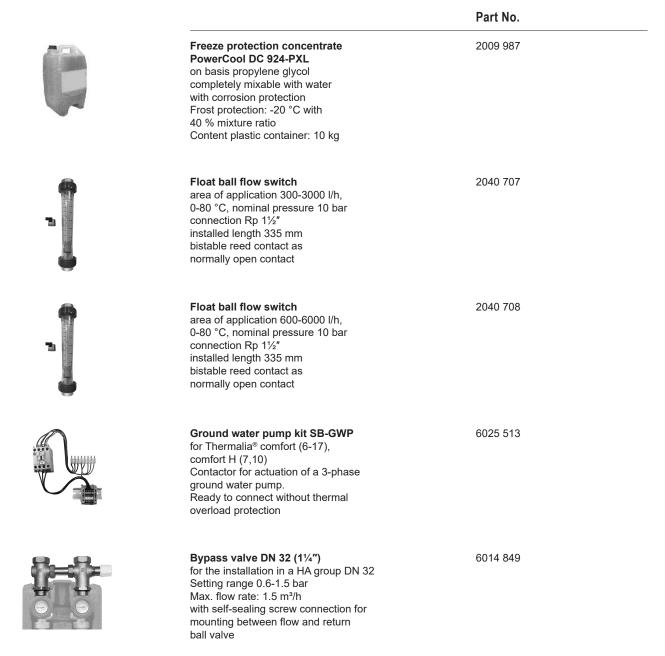
for the automatic heat pump ECR461. Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

Universal connector set

for automatic heat pump ECR461 Plugs:

- 3x 230V digital input
- 4x 230V outputs
- 6x low-voltage inputs
- 2x low-voltage outputs
- 1x ratio. input
- 1x electr. expansion valve


6032 509

6032 510

Accessories	Part No.
Necessary at boiler room temperatures < 10 °C	
Crankcase heater for Belaria® twin I, twin IR, Thermalia® comfort, Thermalia® twin for compressor protection For Belaria® twin I, twin IR 2 pieces are necessary!	6019 718
Instantaneous water heater kit DN 50 from ready electrical box for electrical protection incl. assembly fittings. for combination with all screw-in heating inset EP. Screw-in heaters must be ordered separately.	6044 070
Silt trap Casing made of brass, PN 16 Max. operating temperature 110 °C Sieve made of stainless steel, size of mesh 0.5 mm DN 25-1" DN 32-11/4" DN 40-11/2" DN 50-2"	2046 978 2046 980 2046 982 2046 984
Sludge separator CS 25-1" with magnet for flow rates of 1.0 - 2.0 m³/h for flow speed of 1.0 m/s Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm Connections made of brass G 1" Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 % Weight: 1.21 kg	2063 735
Sludge separator CS 32-11/4" with magnet for flow rates of 2.0 - 3.0 m³/h for flow speed of 1.0 m/s Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm Connections made of brass G 11/4" Drain made of brass: hose connection Any inst. orientation -360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 % Weight: 1.37 kg	2063 736

Brine filling station in compact design DN 25

with shut-off valves, filter and EPS insulation.
Application temperatures -20°C to +60°C Frost protection max. 50 %
Connections DN 25 G 1″, kvs 12.5
Max. operating pressure 1.0 MPa (10 bar) Dirt screen integrated

Part No.

6037 537

Brine filling station in compact design DN 32

with shut-off valves, filter and EPS insulation.
Application temperatures -20°C to +60°C Frost protection max. 50 %
Connections DN 32 G 1½", kvs 22
Max. operating pressure 1.0 MPa (10 bar) Dirt screen integrated

6033 364

Immersion sensor TF/2P/2.5/6T, L = 2.5 m

for TopTronic® E controller modules/ module expansions with exception of basic module district heating/fresh water or basic module district heating com, cable length: 2.5 m without plug sensor sleeve diameter: 6 x 50 mm, dewpoint-proof, sensor may already be included in scope of delivery of heat generator/controller module/module expansion, operating temperature: -20...105 °C, index of protection: IP67

2056 789

Services

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.

Hoval Thermalia® comfort (6-17) with R410A

Туре			(6)	(8)	(10)	(13)	(17)
Seasonal coefficient of performance moderate of 35 °C /55 °C	climate (brine)	SCOP	4.4/3.2	4.6/3.3	5.0/3.5	5.0/3.7	5.0/3.7
Performance data acc. to EN 14511 • Heat output B0W35 • Power consumption B0W35 • Coefficient of performance B0W35		kW ¹ kW ¹ COP	5.83 1.31 4.45	7.56 1.66 4.55	10.58 2.20 4.81	13.36 2.78 4.81	17.18 3.64 4.72
 Heat output W10W35 Power consumption W10W35 Coefficient of performance W10W35 		kW ¹ kW ¹ COP	7.11 1.31 5.43	9.63 1.64 5.87	12.71 2.09 6.08	17.52 2.79 6.28	22.34 3.80 5.88
Operating weight Compressor type	approx.	kg	140	150 1 x spi	160 ral (scroll), he	170 rmetic	180
Refrigerant filling R410A Condenser/evaporator Material		kg	1.3	1.6 Plate	1.85 e heat exchan	2.12 nger	2.4
Piping connections with flex. connecting hose		G	1"	1"	1″	1"	1"
Nominal volume flow and resistance brine/wate	er heat pump						
 Heating (ΔT = 5 K) ΔP Pressure drop condenser Residual overpressure Heat source (ΔT = 3.5 K) ΔP Pressure drop evaporator (glycol) Residual overpressure 		m³/h kPa kPa m³/h kPa kPa	1.01 6.2 69 1.26 11.3 60	1.30 6.7 68 1.65 12.9 63	1.82 8.3 57 2.34 16.5 55	2.30 9.2 67 2.96 20.4 94	2.96 10.2 62 3.78 16.2 98
Nominal volume flow and resistance water/wate • Heating (ΔT = 5 K) ΔP Pressure drop condenser Residual overpressure • Heat source (ΔT = 5 K) ⁵ ΔP Pressure drop evaporator Residual overpressure	er heat pump	m³/h kPa kPa m³/h kPa kPa	1.23 9.2 62 1.0 9.3 68	1.66 10.9 55 1.38 10.6 72	2.19 11.9 45 1.83 13.5 80	3.02 15.8 59 2.54 16.7 108	3.85 14.1 52 2.84 13.2 110
 Operating pressure max. Water side Brine side		bar bar			6 6		
Operating limit values • Ranges of application for heating and see diag	grams.						
 Ranges of application for heating and hot water 	er see diagrams						
 Installation place operation ⁴ Storage 	min./max. min./max.	°C			5/35 -15/50		
Electrical data ³ Voltage Frequency Voltage range		V Hz V			3 x 400 50 380-420		
Operating pressure compressor Imax Starting current with starting current limiter ² Principal current (external protection) with brine	e systems	A A A Type	4.8 9.6 13 C,D,K	6.2 12.4 13 C,D,K	7.4 14.8 13 C,D,K	9.7 19.4 13 C,D,K	13.0 26.0 16 C,D,K
Principal current (external protection) with ground	nd water systems	A Type	13 C,D,K	13 C,D,K	13 C,D,K	13 C,D,K	16 C,D,K
Control current (external protection)		A Type	13 B,C,D,K,Z	13 B,C,D,K,Z	13 B,C,D,K,Z	13 B,C,D,K,Z	13 B,C,D,K,Z

¹ kW = Standard values according to EN 14511; Values for B0W35 with 25 % monopolypropylene

² Effective value

 $^{^{\}scriptscriptstyle 3}$ Values for electrical data apply for supply voltage of 3 x 400 V

⁴ <10 °C Crankcase heater is necessary

⁵ ΔT in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.

Hoval Thermalia® comfort H (7,10) with R134a

Туре			H (7)	H (10)
Seasonal coefficient of performance moderate clin 35 $^{\circ}\text{C}$ /55 $^{\circ}\text{C}$	nate	SCOP	4.7/3.5	4.9/3.7
Performance data acc. to EN 14511 • Heat output B0W35 • Power consumption B0W35 • Coefficient of performance B0W35		kW ¹ kW ¹ COP	6.5 1.4 4.50	9.1 2.0 4.6
Heat output W10W35Power consumption W10W35Coefficient of performance W10W35		kW ¹ kW ¹ COP	9.1 1.6 5.90	12.8 2.1 6.0
 Operating weight Compressor type	approx.	kg	160 1 x spiral	180 (scroll), hermetic
 Refrigerant filling R134a Condenser/evaporator Material Piping connections with flex. connecting hose 		kg G		3.4 eat exchanger V4A, AISI 316, 1.4401 1″
Nominal volume flow and resistance brine/water he	eat pump			
 Heating (ΔT = 5 K) ΔP Pressure drop condenser Residual overpressure Heat source (ΔT = 3.5 K) ΔP Pressure drop evaporator Residual overpressure 		m³/h kPa kPa m³/h kPa kPa	1.14 6.0 69 1,47 12,5 59	1.61 7.0 63 2,07 16,2 60
Nominal volume flow and resistance water/water h • Heating (ΔT = 5 K) ΔP Pressure drop condenser Residual overpressure	neat pump	m³/h kPa kPa	1.6 13.0 57	2.25 14.0 41
 Heat source (ΔT = 5 K)⁵ ΔP Pressure drop evaporator Residual overpressure 		m³/h kPa kPa	1.34 7.49 68	1.89 9.7 70
 Operating pressure max. Water side Brine side		bar bar		6 6
Operating limit values • Ranges of application for heating see diagrams.				
 Ranges of application for heating and hot water s 	see diagrams			
	min./max. min./max.	°C		5/35 -15/50
Electrical data ³				
Voltage Frequency Voltage range		V Hz V		3 x 400 50 380-420
Operating pressure compressor Imax Starting current with starting current limiter ² Principal current (external protection) with brine sy		A A A Type	6.8 13.6 13 C,D,K	10.1 20.2 13 C,D,K
Principal current (external protection) with ground	water systems	A Type	13 C,D,K	13 C,D,K
Control current (external protection)		A Type	13 B,C,D,K,Z	13 B,C,D,K,Z

¹ kW = standard values according to EN 14511; values for B0W35 with 25 % monopolypropylene

² Effective value

 $^{^{\}scriptscriptstyle 3}$ Values for electrical data apply for supply voltage of 3 x 400 V

^{4 &}lt;10 °C crankcase heater is necessary

⁵ ΔT in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.

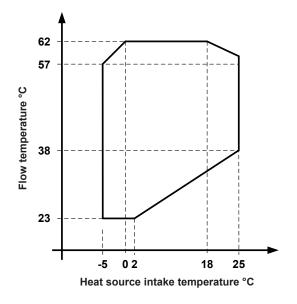
Hoval Thermalia® comfort (6-17), comfort H (7,10)

Sound emission

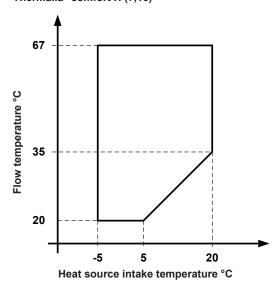
The effective sound pressure level ¹ in the installation room is dependent on different factors like room size, absorptive capacity, reflection, free sound spreading etc.

Therefore it is important that the installation room lies, if possible, outside the noise-sensitive range and is supplied with sound-absorbing doors.

Ducts and pipes must be fixed to walls and ceiling in a way that no structure-borne sound is being transmitted to the system.


Thermalia® comfort (6-17) Thermalia® comfort H	(6)	(8)	(10) (7)	(13)	(17) (10)
Sound power level dB(A)	45	46	46	49	50
Sound pressure level dB(A) 1	35	35	36	37	38

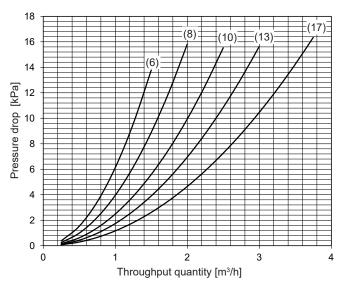
¹ Sound pressure level, distance 1 m (in standard room with approx. 5-6 dB(A) sound absorption)


Diagrams range of application

Heating and hot water

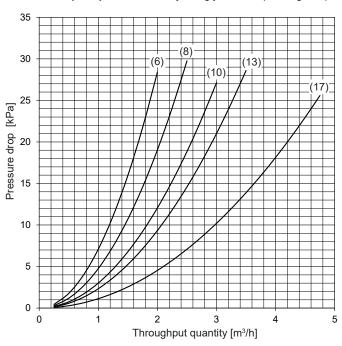
Thermalia® comfort (6-17)

Thermalia® comfort H (7,10)

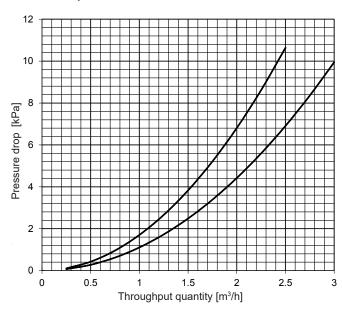


Hoval

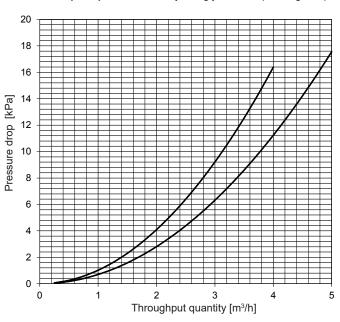
■ Technical data


Hoval Thermalia® comfort (6-17) Heating

Pressure drop condenser with water


Heat source

Pressure drop evaporator with ethylene glycol 25 % (Antifrogen N)


Hoval Thermalia® comfort H (7,10) Heating

Pressure drop condenser with water

Heat source

Pressure drop evaporator with ethylene glycol 25 % (Antifrogen N)

Refrigeration capacity

$$Q_0 = Q - P$$

Q₀ = Refrigeration capacity (kW)

Q = Heat output (kW)

P = Power consumption compressor (kW)

 Δt_2 = Temperature difference heat source

supply/discharge (K)

C = 0.86

c_n = 0.89 (specific heat)

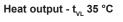
 γ = 1.05 (specific weight, density)

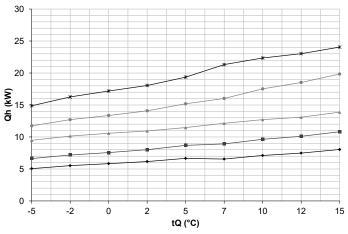
Volume flow evaporator

$$V = \frac{Q_0 \cdot c}{\Delta t_2 \cdot c_p \cdot \gamma} (m^3/h)$$

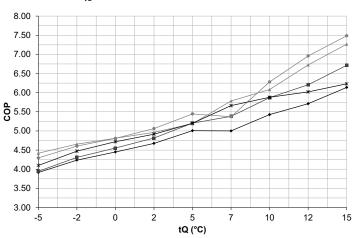
 Δp (kPa) = Pressure drop with frost protection (1 kPa = 0.1 mWC) Δp = $f \times \Delta P f$ Ethylene glycol % (Antifrogen N)

0.97 ≜ 20 %

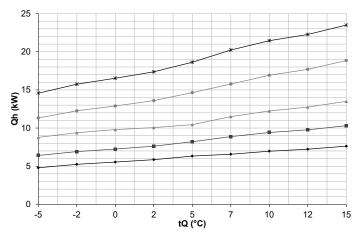

 Δp_w (kPa) = Pressure drop with water (1 kPa = 0.1 mWC)

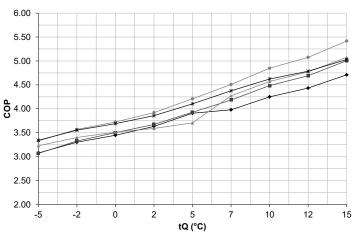

 $\Delta p_{w} = \Delta P \times 0.89$

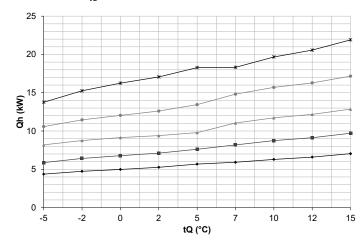
Performance data - heating

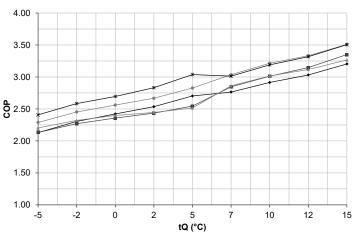

Maximum heat output

Hoval Thermalia® comfort (6-17)




Output rating - t_{VL} 35 °C


Heat output - t_{VL} 45 °C


Output rating - t_{vL} 45 °C

Heat output - $t_{_{VL}}$ 62 °C

Output rating - $t_{_{VL}}$ 62 °C

- → Thermalia® comfort (6)
- Thermalia® comfort (8)
- Thermalia® comfort (10)
- Thermalia® comfort (13)
- Thermalia® comfort (17)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

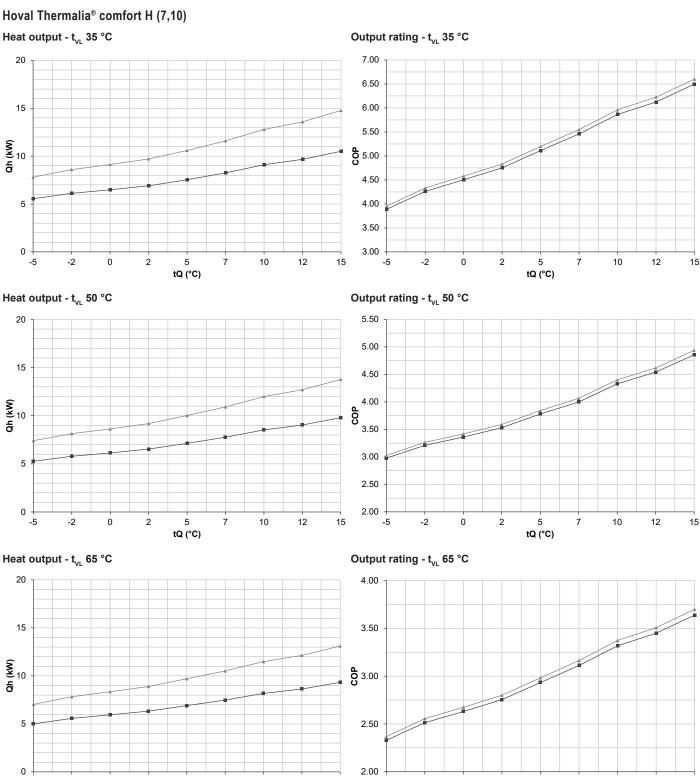
Performance data - heating

Hoval Thermalia® comfort (6-17) Indications acc. to EN 14511

Type	tions acc. to	D EN 14511		(6)			(8)			(10)			(13)			(17)	
tVL		tQ	Qh	P		Qh	(0) P		Qh	(10) P		Qh	(13) P		Qh	Ρ	
°C		°C	kW	kW	COP	kW	kW	COP	kW	kW	COP	kW	kW	COP	kW	kW	COP
		-5	5.1	1.2	4.28	6.7	1.5	4.34	9.7	2.0	4.97	11.9	2.5	4.73	15.0	3.4	4.42
		-2	5.6	1.2	4.65	7.3	1.5	4.75	10.4	2.0	5.24	12.9	2.5	5.07	16.4	3.4	4.87
	Brine	0 2	5.9	1.2	4.90	7.7	1.5	5.03	10.8	2.0	5.41	13.5	2.6	5.29	17.4	3.4	5.18
30		5	6.3 6.8	1.2 1.2	5.14 5.49	8.1 8.9	1.5 1.5	5.33 5.78	11.2 11.8	2.0 2.0	5.60 5.89	14.3 15.4	2.6 2.6	5.58 6.00	18.3 19.6	3.4 3.4	5.38 5.68
00	-	7	6.5	1.2	5.47	8.9	1.5	5.95	12.4	1.9	6.49	16.1	2.7	5.97	21.7	3.5	6.23
	Motor	10	7.2	1.2	5.96	9.7	1.5	6.52	12.9	1.9	6.79	17.7	2.6	6.93	22.6	3.5	6.43
	Water	12	7.6	1.2	6.29	10.2	1.5	6.92	13.2	1.7	7.75	18.8	2.4	7.87	23.3	3.5	6.56
		15	8.2	1.2	6.78	11.0	1.5	7.52	14.0	1.7	8.44	20.2	2.4	8.50	24.2	3.6	6.75
		-5 -2	5.1	1.3	3.91 4.24	6.6	1.7	3.95	9.5	2.1	4.42	11.7	2.7	4.29	14.9	3.6	4.10
	Brine	-2 0	5.5 5.8	1.3 1.3	4.45	7.2 7.6	1.7 1.7	4.31 4.55	10.1 10.6	2.2 2.2	4.66 4.81	12.7 13.4	2.8 2.8	4.60 4.81	16.3 17.2	3.6 3.6	4.47 4.72
	Dillio	2	6.2	1.3	4.68	8.0	1.7	4.81	10.9	2.2	4.96	14.1	2.8	5.06	18.0	3.7	4.92
35		5	6.7	1.3	5.01	8.7	1.7	5.20	11.5	2.2	5.19	15.2	2.8	5.44	19.4	3.7	5.20
		7	6.6	1.3	5.00	8.9	1.7	5.38	12.1	2.1	5.78	16.0	3.0	5.37	21.3	3.8	5.66
	Water	10	7.1	1.3	5.43	9.6	1.6	5.87	12.7	2.1	6.08	17.5	2.8	6.28	22.3	3.8	5.88
		12	7.5	1.3	5.71	10.1	1.6	6.21	13.1	1.9	6.73	18.5	2.7	6.96	23.0	3.8	6.02
		15 -5	8.0 4.9	1.3	6.14 3.46	10.8 6.5	1.6	6.71 3.46	13.9 9.1	1.9 2.4	7.27 3.75	19.8 11.5	2.7 3.1	7.49 3.76	24.1 14.7	3.9 4.0	6.23 3.69
		-2	5.4	1.4	3.72	7.1	1.9	3.76	9.8	2.5	3.95	12.5	3.1	4.03	16.0	4.0	3.97
	Brine	0	5.7	1.5	3.90	7.4	1.9	3.97	10.2	2.5	4.08	13.1	3.1	4.21	16.9	4.1	4.15
		2	6.0	1.5	4.10	7.8	1.9	4.18	10.5	2.5	4.19	13.8	3.1	4.43	17.7	4.1	4.33
40		5	6.5	1.5	4.40	8.5	1.9	4.49	11.0	2.5	4.36	14.9	3.1	4.76	19.0	4.1	4.60
		7	6.6	1.5	4.43	8.9	1.9	4.71	11.8	2.4	4.93	15.9	3.2	4.91	20.8	4.2	4.95
	Water	10 12	7.0 7.4	1.5 1.5	4.77 5.00	9.5 9.9	1.9 1.9	5.09 5.36	12.5 12.9	2.4 2.3	5.23 5.60	17.2 18.1	3.1 3.1	5.48 5.89	21.9 22.6	4.2 4.2	5.19 5.34
		15	7.4	1.5	5.35	10.6	1.8	5.75	13.7	2.3	5.99	19.3	3.1	6.31	23.8	4.2	5.57
		-5	4.8	1.6	3.08	6.4	2.1	3.07	8.8	2.7	3.23	11.3	3.4	3.33	14.6	4.4	3.34
		-2	5.3	1.6	3.30	6.9	2.1	3.33	9.4	2.8	3.40	12.3	3.4	3.57	15.7	4.4	3.55
	Brine	0	5.6	1.6	3.45	7.3	2.1	3.50	9.8	2.8	3.51	12.9	3.5	3.73	16.5	4.5	3.69
45		2	5.9	1.6	3.63	7.6	2.1	3.67	10.1	2.8	3.59	13.6	3.5	3.92	17.4	4.5	3.86
45		5 7	6.3	1.6 1.7	3.91	8.2 8.9	2.1	3.93 4.18	10.5 11.5	2.8	3.71 4.27	14.7 15.8	3.5	4.21 4.51	18.6 20.2	4.5	4.10
		10	7.0	1.6	4.25	9.4	2.1	4.49	12.3	2.7	4.57	16.9	3.5	4.85	21.5	4.6	4.62
	Water	12	7.2	1.6	4.43	9.8	2.1	4.69	12.8	2.7	4.77	17.7	3.5	5.08	22.3	4.7	4.79
		15	7.6	1.6	4.71	10.3	2.1	5.00	13.5	2.7	5.08	18.9	3.5	5.42	23.5	4.7	5.03
		-5	4.7	1.7	2.73	6.2	2.3	2.71	8.6	3.0	2.86	11.1	3.8	2.95	14.3	4.8	2.97
	Dring	-2	5.1	1.7	2.92	6.7	2.3	2.93	9.2	3.1	3.01	12.0	3.8	3.17	15.6	4.9	3.18
	Brine	0 2	5.4 5.7	1.8 1.8	3.04 3.20	7.1 7.4	2.3 2.3	3.07 3.21	9.6 9.9	3.1 3.1	3.11 3.17	12.6 13.3	3.8 3.8	3.30 3.47	16.4 17.3	5.0 5.0	3.32 3.47
50		5	6.2	1.8	3.44	8.0	2.3	3.42	10.3	3.1	3.27	14.3	3.9	3.71	18.6	5.0	3.69
		7	6.4	1.8	3.54	8.6	2.4	3.63	11.4	3.0	3.74	15.5	3.9	3.97	19.6	5.1	3.83
	Water	10	6.8	1.8	3.75	9.2	2.4	3.88	12.1	3.0	3.99	16.6	3.9	4.25	20.9	5.1	4.06
	rrator	12	7.1	1.8	3.90	9.5	2.4	4.05	12.6	3.0	4.15	17.3	3.9	4.43	21.7	5.2	4.20
		15 -5	7.5 4.5	1.8	4.11 2.44	10.1 5.9	2.3	4.30 2.40	13.3	3.0	4.39 2.55	18.4	3.9 4.1	4.71 2.64	23.0	5.2	4.42 2.66
		-3 -2	4.9	1.9	2.44	6.5	2.5	2.59	9.0	3.4	2.69	11.8	4.1	2.83	15.4	5.4	2.87
	Brine	0	5.2	1.9	2.70	6.9	2.5	2.72	9.4	3.4	2.78	12.4	4.2	2.96	16.3	5.4	3.01
		2	5.5	1.9	2.84	7.2	2.6	2.83	9.7	3.4	2.83	13.0	4.2	3.09	17.2	5.5	3.15
55		5	6.0	2.0	3.05	7.8	2.6	3.00	10.1	3.5	2.92	13.9	4.2	3.30	18.5	5.5	3.35
		7	6.3	2.0	3.18	8.4	2.6	3.19	11.2	3.4	3.33	15.2	4.3	3.53	19.0	5.6	3.39
	Water	10 12	6.7 6.9	2.0 2.0	3.35	8.9	2.6	3.40	11.9	3.4	3.52	16.2	4.3	3.76	20.3	5.7	3.59
		15	7.3	2.0	3.46 3.63	9.3 9.9	2.6 2.6	3.54 3.75	12.4 13.1	3.4 3.4	3.65 3.85	16.9 17.9	4.3 4.3	3.91 4.14	21.1 22.4	5.7 5.7	3.72 3.92
		-5	4.4	2.0	2.13	5.9	2.8	2.13	8.2	3.7	2.20	10.6	4.6	2.29	13.8	5.7	2.41
		-2	4.7	2.1	2.31	6.4	2.8	2.27	8.8	3.8	2.32	11.5	4.7	2.45	15.3	5.9	2.58
	Brine	0	5.0	2.1	2.42	6.8	2.9	2.36	9.1	3.8	2.40	12.0	4.7	2.56	16.3	6.0	2.70
00		2	5.3	2.1	2.54	7.1	2.9	2.43	9.4	3.8	2.45	12.6	4.7	2.67	17.1	6.0	2.83
62		5 7	5.7	2.1	2.70	7.6	3.0	2.54	9.8	3.9	2.52	13.4	4.8	2.83	18.3	6.0	3.04
		10	5.9 6.3	2.1 2.2	2.76 2.91	8.2 8.7	2.9 2.9	2.85 3.01	11.0 11.7	3.9 3.9	2.86 3.02	14.8 15.7	4.9 4.9	3.04 3.21	18.3 19.7	6.1 6.2	3.01 3.19
	Water	12	6.6	2.2	3.03	9.1	2.9	3.15	12.2	3.9	3.12	16.3	4.9	3.33	20.6	6.2	3.32
		15	7.0	2.2	3.20	9.7	2.9	3.35	12.9	3.9	3.27	17.2	4.9	3.51	21.9	6.2	3.51

tVL = heating flow temperature (°C)

tQ = source temperature (°C)


Qh = heat output at full load (kW), measured in accordance with standard EN 14511

P = power consumption of the overall unit (kW)
COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Take account of daily power cuts! see Engineering

Performance data - heating

Maximum heat output

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

tQ (°C)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

— Thermalia® comfort H (7)

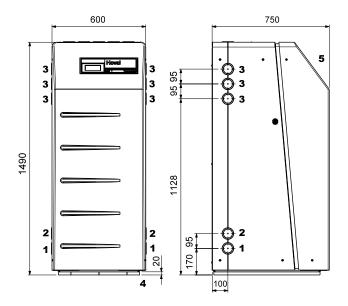
★ Thermalia® comfort H (10)

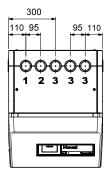
10

tQ (°C)

Performance data - heating

Hoval Thermalia® comfort H (7,10) Indications acc. to EN 14511

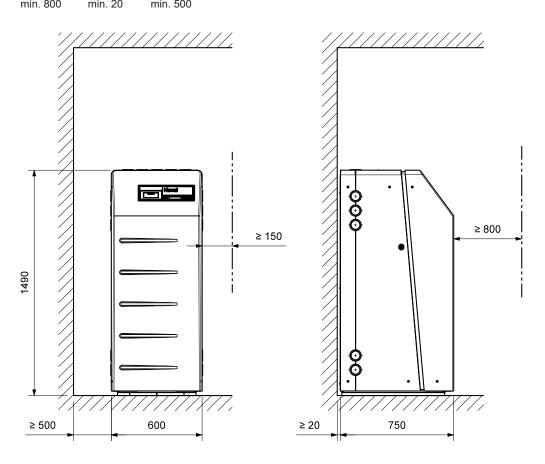

Гуре tVL		tQ	Qh	H (7) P		Qh	H (10) P	
°C		°C	kW	kW	COP	kW	kW	COP
-		-5	5.6	1.4	4.16	7.9	1.9	4.23
	Brine	-2 0	6.2 6.6	1.4 1.4	4.58 4.86	8.7 9.2	1.9 1.9	4.65 4.94
	Dille	2	7.0	1.4	5.13	9.8	1.9	5.21
30		5	7.6	1.4	5.53	10.7	1.9	5.62
		7	8.4	1.4	5.92	11.8	2.0	6.02
	Water	10 12	9.3 9.8	1.5 1.5	6.33 6.59	13.0 13.8	2.0 2.1	6.44 6.70
		15	-	-	-	-	-	-
		-5	5.6	1.4	3.89	7.8	2.0	3.96
	Brine	-2 0	6.1 6.5	1.4 1.4	4.26 4.50	8.6 9.1	2.0 2.0	4.33 4.58
	Billio	2	6.9	1.5	4.75	9.7	2.0	4.83
35		5	7.5	1.5	5.11	10.6	2.0	5.20
		7 10	8.3 9.1	1.5 1.6	5.46 5.86	11.6 12.8	2.1 2.1	5.55 5.96
	Water	12	9.7	1.6	6.12	13.6	2.2	6.23
		15	10.5	1.6	6.50	14.8	2.2	6.60
		-5 -2	5.5 6.0	1.5 1.6	3.54 3.85	7.7 8.4	2.1 2.2	3.60 3.91
	Brine	0	6.3	1.6	4.05	8.9	2.2	4.12
		2	6.8	1.6	4.26	9.5	2.2	4.33
40		5 7	7.4 8.1	1.6 1.7	4.58	10.4 11.3	2.2	4.65 4.94
		10	8.9	1.7	4.86 5.26	12.5	2.3	5.35
	Water	12	9.4	1.7	5.52	13.2	2.4	5.61
		15	10.2	1.7	5.89	14.4	2.4	5.99
		-5 -2	5.4 5.9	1.7 1.7	3.24 3.49	7.5 8.2	2.3 2.3	3.37 3.55
	Brine	0	6.2	1.7	3.66	8.7	2.3	3.72
		2	6.6	1.7	3.85	9.3	2.4	3.91
45	Water	5 7	7.2 7.9	1.7 1.8	4.13	10.1 11.1	2.4 2.5	4.20
		10	8.7	1.8	4.36 4.75	12.2	2.5	4.43
		12	9.2	1.8	5.00	12.9	2.5	5.08
		<u>15</u> -5	10.0	1.9	5.37	14.0	2.6	5.45
		-5 -2	5.3 5.8	1.8 1.8	2.98 3.21	7.4 8.1	2.4 2.5	3.03 3.26
	Brine	0	6.1	1.8	3.36	8.6	2.5	3.42
		2	6.5	1.9	3.53	9.2	2.6	3.59
50		5 7	7.1 7.8	1.9 1.9	3.78 4.00	10.0 10.9	2.6 2.7	3.84 4.07
	Water	10	8.5	2.0	4.33	12.0	2.7	4.40
		12	9.0	2.0	4.54	12.7	2.8	4.62
		15 -5	9.8 5.2	2.0 1.9	4.86 2.75	13.8 7.3	2.8	4.94 2.79
		-2	5.7	1.9	2.96	8.0	2.7	3.01
	Brine	0	6.1	2.0	3.10	8.5	2.7	3.15
55		2 5	6.5 7.1	2.0 2.0	3.26 3.48	9.1 9.9	2.7 2.8	3.31 3.54
55		<u>5</u> 7	7.1 7.7	2.0	3.68	10.8		3.75
	Water	10	8.4	2.1	3.97	11.8	2.9	4.01
	710101	12 15	8.9 9.6	2.1	4.15	12.5	3.0	4.22
		-5	<u>9.6</u> 5.1	2.2	4.42 2.44	13.5 7.1	3.0 2.9	4.49 2.48
		-2	5.6	2.1	2.64	7.9	2.9	2.68
	Brine	0	6.0	2.2	2.76	8.4	3.0	2.80
62		2 5	6.4 7.0	2.2 2.3	2.89 3.08	9.0 9.8	3.0 3.1	2.9 ² 3.13
-		7	7.5	2.3	3.27	10.6	3.2	3.32
	Water	10	8.2	2.4	3.49	11.6	3.3	3.55
	'	12 15	8.7 9.4	2.4 2.4	3.64 3.85	12.2 13.2	3.3 3.4	3.70 3.91
		-5	5.0	2.4	2.33	7.0	3.4	2.37
		-2	5.6	2.2	2.51	7.8	3.1	2.56
	Brine	0	5.9	2.3	2.63	8.4	3.1	2.67
		2 5	6.3 6.9	2.3 2.4	2.75 2.93	8.9 9.7	3.2 3.3	2.80 2.98
65		7	7.5	2.4	3.11	10.5	3.3	3.16
65		10	8.2	2.5	3.32	11.5	3.4	3.37
	Water							
	Water	12 15	8.6 9.3	2.5 2.6	3.45 3.64	12.1 13.1	3.5 3.5	3.51 3.70


tVL = heating flow temperature (°C)
tQ = source temperature (°C)
Qh = heat output at full load (kW), measured in accordance with standard EN 14511
P = power consumption of the overall unit (kW)
COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Take account of daily power cuts! see Engineering

Dimensions

Hoval Thermalia® comfort (6-17) and comfort H (7,10) Dimensions in mm

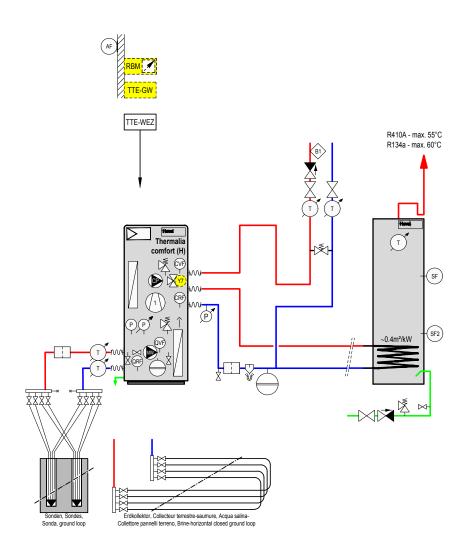

- 1 Heat source outlet R1" (selectable lateral or above)
- 2 Heat source inlet R1" (selectable lateral or above)
- 3 Openings freely selectable for:
 - heating flow R1"
 - heating return R1"
 - hot water R1" (left or above)
 - electrical connection
- 4 Vibration damping
- 5 Control panel

The 4 flexible hoses 1" can be extracted from the heat pump by at least 30 cm

Required space

(required wall distance in mm for operation and maintenance)

front	rear	right or left side
min 900	min 20	min 500


■ Examples

Thermalia® comfort (6-17), comfort H (7,10)

Brine/water-water/water heat pump with

- earth probes
- calorifier
- 1 direct circuit

Hydraulic schematic BBBAE020

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

TTE-WEZ TopTronic® E basic module heat generator (installed)

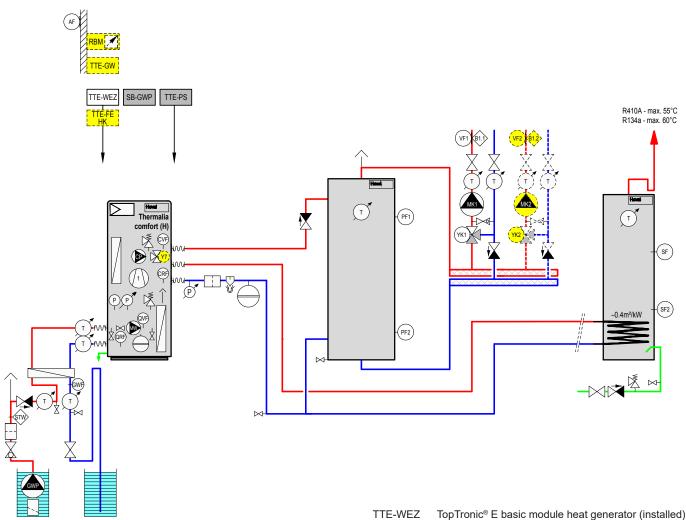
B1 Flow temperature guard (if required)

AF Outdoor sensor
SF Calorifier sensor
SF2 Calorifier sensor 2

Option

RBM TopTronic® E room control module

TTE-GW TopTronic® E Gateway Y7 Switching valve


■ Examples

Thermalia® comfort (6-17), comfort H (7,10)

Brine/water-water/water heat pump with

- water/water indirect utilisation
- energy buffer storage tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematic BBBAE070

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

SB-GWP System module ground water pump TTE-PS TopTronic® E buffer module

Flow temperature sensor 1 Flow temperature guard (if required) B1.1

MK1 Pump mixer circuit 1 YK1 Actuator mixer 1 ΑF Outdoor sensor SF Calorifier sensor PF1 Buffer sensor 1 PF2 Buffer sensor 2 **GWF** Frost controller STW Flow controller GWP Ground water pump

Option

VF1

TopTronic® E room control module TopTronic® E Gateway RBM

TTE-GW

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 Flow temperature sensor 2

B1.2 Flow temperature guard (if required)

MK2 Pump mixer circuit 2 YK2 Actuator mixer 2

Hoval

Description

Hoval Thermalia® twin Hoval Thermalia® twin H Brine/water-water/water heat pump

- Brine/water-water/water heat pump with two output stages for indoor installation
- · Compact unit with high energy efficiency
- Extremely low-noise with triple-mounted construction
- Stable framework of galvanised sheet steel; with removable, powder-coated, sound-insulated side panels, colour brown red (RAL 3011)
- Sound-insulated plastic hood, colour flame red (RAL 3000)
- Temperatures and pressures of brine and refrigeration circuit available
- 2 spiral (scroll) compressors
- Electronic expansion valve
- Plate heat exchanger system of stainless steel
- Electronic starting current limiter with rotary field/phase monitoring for each compressor
- · Integrated brine pressure monitoring
- · Hydraulic connections to the rear
- 4 flexible hoses incl. 90° bend (included separately)
 Thermalia® twin (20,26): 1½" 4x 1 m
 Thermalia® twin (35,42): 2" 4x 1 m
 Thermalia® twin H (13-22): 1½" 4x 0.965 m
- · Sound-insulating floor mat
- Refrigerant Thermalia® twin (20-42) with R410A Thermalia® twin H (13-22) with R134a
- · Heat pump wired ready
- TopTronic® E controller installed

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- · Commissioning wizard
- Service and maintenance function
- · Fault message management
- Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

TopTronic® E basic module heat generator (TTE-WEZ)

- Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water loading circuit
 - bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- · Contact sensor (flow temperature sensor)
- · Rast-5 basic plug set

	alia® twin er/water		e/water		Refri- gerant	max. flow		output W10W35
35 °C	55 °C	35 °C	55 °C	Туре	gerant	°C	kW	kW
Α***	A***	A***	A**	twin (20)	R410A	62	20.4	27.3
A***	Α	Α***	A**	twin (26)	R410A	62	26.2	35.1
A***	Α***	Α***	A***	twin (36)	R410A	62	35.3	46.4
A***	A***	A***	A**	twin (42)	R410A	62	42.0	55.4
A***	A***	Α	A**	twin H (13)	R134a	67	12.3	17.0
A***	A***	A***	A**	twin H (19)	R134a	67	18.0	24.7
A***	A***	A***	A**	twin H (22)	R134a	67	20.9	28.8

Energy efficiency class of the compound system with control

Seal of approval FWS

The Thermalia® twin (20-42) and twin H (13-22) series are certified by the seal of approval of the authorisation commission of Switzerland

Options for TopTronic® E controller

- · Can be expanded by max.
- 1 module expansion:
- module expansion heating circuit or
- module expansion heat accounting or
- module expansion universal
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Electrical connections

Connection to the rear

Delivery

- Heat pump on pallet, plastic hood and floor plate separately packed
- · Flexible hoses included
- · Sensor set separately packed

Option

Internet connection

Brine/water-water/water heat pump Hoval Thermalia® twin

Part No.

Brine/water-water/water heat pump with 2 hermetic spiral (scroll) compressors for indoor installation with flexible connection pipes and built-in Hoval TopTronic® E control

Control functions integrated for

- 1 heating circuit with mixer
- 1 heating circuit without mixer
- 1 hot water loading circuit
- bivalent and cascade management
- Can be optionally expanded by max.
 1 module expansion:
 - module expansion heating circuit or
 - module expansion universal
 - module expansion heat accounting
- Can be optionally networked with a total of up to 16 controller modules (incl. solar module)

Delivery

- Compact device internally wired ready for installation
- Heat pump on pallet, plastic hood and sound-insulating floor mat separately packed.
- Flexible hoses included
- · Sensor set separately packed

Notice

Suitable heat source and charging pumps:

Hoval system pump set SPS-I with interface for pump control Type 0-10 V or PWM1

Premium pump Stratos with IF module Stratos Ext. Off (0-10 V)

with module strates Ext. On (0-10 V)

See brochure "Accessories" - chapter "Circulating pumps"

Energy efficiency class see Description

Hoval Thermalia® twin

Refrigerant R410A

Flow temperature max. 62 °C

Thermalia®	Heat	output	
twin	with B0W35	with W10W35	
Туре	kW	kW	
(20)	20.4	27.3	7014 725
(26)	26.2	35.1	7014 726
(36)	35.3	46.4	7014 727
(42)	42.0	55.4	7014 728

Hoval Thermalia® twin H

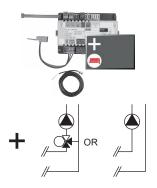
Refrigerant R134a

Flow temperature max. 67 °C

Thermalia [®]	Heat	output
twin	with B0W35	with W10W35
Type	kW	kW
(13)	12.3	17.0
(19)	18.0	24.7
(22)	20.9	28.8

7014 729 7014 730 7014 731

Accessories Part No.


Sound attenuation cowl for compressor

for reducing the transmission of noise. In heat pumps with two compressors, it is mandatory for two sound attenuation cowls to be ordered.

Thermalia® twin Type	Number of compressors	
(20)	2	2069 695
(26)	2	2069 696
(36)	2	2069 697
(42)	2	2069 697
H (13)	2	2069 698
H (19)	2	2069 699
H (22)	2	2069 699

Hoval

■ Part No.

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

Notice

The flow rate sensor set must be ordered as well.

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

TopTronic® E module expansions

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in:

Boiler control, wall housing, control panel

Flow rate sensor sets

Plastic housing

DN 20

DN 25

 Size
 Connection
 Flow rate I/min

 DN 8
 G ¾"
 0.9-15

 DN 10
 G ¾"
 1.8-32

 DN 15
 G 1"
 3.5-50

G 11/4"

G 11/3"

5-85

9-150

Brass housing Size	Connection	Flow rate l/min		
DN 10	G 1"	2-40		
DN 32	G 1½"	14-240		

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Part No.

6034 576

6037 062

6038 508 6038 509 6038 510

6042 949 6042 950

6034 575

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Part No.
6034 499
6034 503

TopTronic® E controller modules						
TTE-HK/WW	TopTronic® E heating circuit/	6034 571				
	hot water module					
TTE-SOL	TopTronic® E solar module	6037 058				
TTE-PS	TopTronic® E buffer module	6037 057				
TTE-MWA	TopTronic® E measuring module	6034 574				

TTE-RBM	TopTronic® E room control modules	
	easy white	6037 071
	comfort white	6037 069
	comfort black	6037 070
Enhanced la	6039 253	

Enhanced language package TopTronic® E one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA

TopTronic® E room control modules

HovalConnect	
HovalConnect domestic starter LAN	6049 496
HovalConnect domestic starter WLAN	6049 498
HovalConnect commercial starter LAN	6049 495
HovalConnect commercial starter WLAN	6049 497
SMS remote control unit	6018 867
System component SMS remote control unit	6022 797

TopTronic® E interface modules	
GLT module 0-10 V	6034 578
HovalConnect domestic starter Modbus	6049 501
HovalConnect domestic starter KNX	6049 593
HovalConnect commercial starter Modbus	6049 500
HovalConnect commercial starter KNX	6049 502
TopTronic® E wall casing	

WG-190	Wall casing small	6035 563
WG-360	Wall casing medium	6035 564
WG-360 BM	Wall casing medium with	6035 565
	control module cut-out	
WG-510	Wall casing large	6035 566
WG-510 BM	Wall casing large with	6038 533
	control module cut-out	

TopTronic® E se	ensors	
AF/2P/K	Outdoor sensor	2055 889
TF/2P/5/6T	Immersion sensor, L = 5.0 m	2055 888
ALF/2P/4/T	Contact sensor, L = 4.0 m	2056 775
TF/1.1P/2.5S/6T	Collector sensor, L = 2.5 m	2056 776
System housing	a	

System housing	
System housing 182 mm	6038 551
System housing 254 mm	6038 552

Bivalent switch 2061 826

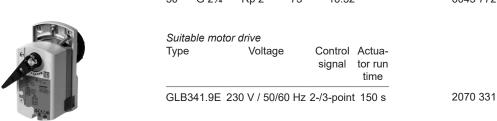
Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Part No.

Protective pipe immersion sleeve SB280 1/2"

brass nickel-plated PN10, 280 mm

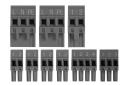
2018 837



Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- incl. seals and screw connections

DN			kvs	V [m³/h] at	
	Valve	Fitting		ΔP 50 mbar	
25	G 1½"	Rp 1"	13	2.91	6045 769
32	G 2"	Rp 11/4"	25	5.59	6045 770
40	G 21/4"	Rp 1½"	49	10.96	6045 771
50	G 2¾"	Rp 2"	73	16.32	6045 772



Screw-in electrical heating inset

for plants with technical storage tank as emergency heating.

Туре	Heat output [kW]	Installation depth [mm]	
EP 2.5	2.35	390	6049 557
EP 3.5	3.6	500	6049 558
EP 5	4.9	620	6049 559
EP 7.5	7.5	850	6049 560

Expansion connector set

for the automatic heat pump ECR461.

Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

Universal connector set

for automatic heat pump ECR461 Plugs:

- 3x 230V digital input
- 4x 230V outputs
- 6x low-voltage inputs
- 2x low-voltage outputs
- 1x ratio. input
- 1x electr. expansion valve

6032 509

6032 510

Necessary at boiler room temperatures < 10 °C

6019 718

Part No.

Crankcase heater for Belaria® twin I, twin IR, Thermalia® comfort, Thermalia® twin for compressor protection For Belaria® twin I, twin IR 2 pieces are necessary!

Instantaneous water heater kit DN 50 from ready electrical box

6044 070

for electrical protection incl. assembly fittings. for combination with all screw-in heating inset EP. Screw-in heaters must be ordered separately.

Strainer

Brass casing, PN 16 Max. operating temperature 110 °C Sieve made of stainless steel, Mesh size 0.5 mm

DN 25-1" 2046 978 DN 32-11/4" 2046 980 DN 40-11/2" 2046 982 DN 50-2" 2046 984

Sludge separator CS 40-11/2" with magnet

2063 737

for flow rates of 3.0 - 5.0 m³/h for flow speed of 1.0 m/s Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm Connections made of brass G 11/2" Drain made of brass: hose connection Any inst. orientation - 360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 % Weight: 1.88 kg

Sludge separator CS 50-2" with magnet

2063 738

for flow rates of 5.0-8.0 m³/h for flow speed of 1.0 m/s Housing made of plastic PPA with diffuser and partial flow removal with 4 extra-strong Neodymium magnets Magnets removable for draining EPP insulation 20 mm Connections made of brass G 2" Drain made of brass: hose connection Any inst. orientation - 360° rotating Temperature range -10 to 120 °C Operating pressure max.: 10 bar Glycol proportion max.: 50 %

Weight: 2.32 kg

Part No.

Safety group for brine circuit SI-Gr. Retaining bar incl. safety valve, pressure gauge, air vent and connection fittings for expansion chambers 2015 354

Expansion chamber

Reflex NG 25 for systems up to approx. 20 kW Operating pressure: up to 6 bar Pre-pressure: 1.5 bar Ø 280 mm, H = 490 mm 242 791

Ground water accessories

Float ball flow switch

nominal pressure 10 bar installed length 335 mm bistable reed contact as contact open, if there is no flow

Area of applicat	Connection	
l/h	°C	
1500-15000	0-80	Rp 2"

Ground water pump kit SB-GWP

for Thermalia® twin (20-42), twin H (13-22) Contactor for actuation of a 3-phase ground water pump. Ready to connect without thermal overload protection 6041 092

2040 709

Brine filling station in compact design DN 25

with shut-off valves, filter and EPS insulation. Application temperatures -20°C to +60°C Frost protection max. 50 % Connections DN 25 G 1", kvs 12.5 Max. operating pressure 1.0 MPa (10 bar) Dirt screen integrated

Brine filling station in compact design DN 32

with shut-off valves, filter and EPS insulation. Application temperatures -20°C to +60°C Frost protection max. 50 % Connections DN 32 G 11/4", kvs 22 Max. operating pressure 1.0 MPa (10 bar) Dirt screen integrated

Immersion sensor TF/2P/2.5/6T, L = 2.5 m

for TopTronic® E controller modules/ module expansions with exception of basic module district heating/fresh water or basic module district heating com, cable length: 2.5 m without plug sensor sleeve diameter: 6 x 50 mm, dewpoint-proof, sensor may already be included in scope of delivery of heat generator/controller module/module expansion, operating temperature: -20...105 °C, index of protection: IP67

Freeze protection concentrate PowerCool DC 924-PXL

on basis propylene glycol completely mixable with water with corrosion protection Frost protection: -20 °C with 40 % mixture ratio Content plastic container: 10 kg

Part No.

6037 537

6033 364

2056 789

2009 987

Services

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.

Hoval Thermalia® twin (20-42) with R410A and Thermalia® twin H (13-22) with R134a

Туре			(20)	(26)	(36)	(42)	H (13)	H (19)	H (22)
Seasonal coefficient of performa climate (brine) 35 °C /55 °C	ance moderate	SCOP	5.2/3.6	5.2/3.6	5.4/3.9	5.3/3.6	4.7/3.4	4.6/3.5	4.9/3.5
Performance data acc. to EN 14 • Heat output B0W35 • Power consumption P0W25	4511	kW ¹ kW ¹	20.4 4.2	26.2 5.5	35.3 7.1	42.0 8.8	12.3 2.7	18.0 4.1	20.9 4.6
Power consumption B0W35Performance B0W35		COP	4.2	5.5 4.79	4.96	6.6 4.76	4.48	4.1	4.58
Heat output W10W35Power consumption W10W35Performance W10W35		kW ¹ kW ¹ COP	27.3 4.2 6.59	35.1 5.5 6.40	46.4 7.2 6.41	55.4 9.1 6.06	17.0 3.0 5.76	24.7 4.4 5.61	28.8 4.9 5.89
 Operating weight Compressor type		approx. kg	280	286	298 2 x spir	310 ral (scroll). h	273 ermetic	283	293
Refrigerant filling R410A		kg	6.5	7.1	8.2	9.0	-	-	-
Refrigerant filling R134a • Condenser/evaporator		kg	-	-	- Plate	- e heat excha	4.8 nger	5.9	6.5
Material .					Stainless ste	el V4A, AISI	316, 1.4401		
Connections Dining connections with flow	annostina haas	R	1½"	1½"	2" 2"	2" 2"	2" 2"	2" 2"	2" 2"
Piping connections with flex. c Nominal volume flow and resista	ů.	Rp	11/2"	11/2"	2	2	2	2	2
• Heating ($\Delta t = 7K$)	ance brine, water i	m³/h	2.5	3.3	4.4	5.2	1.6	2.3	2.7
ΔP Pressure drop condenser		kPa	5.3	7.3	5.0	5.3	1.6	2.0	2.3
• Heat source ($\Delta t = 3.5K$) ΔP Pressure drop evaporator		m³/h kPa	5.0 12	6.3 13	8.1 14	10.2 14	3.3 4.0	4.7 5.0	5.6 6.0
Nominal volume flow and resist	ance water/water i	heat pump							
 Heating (Δt = 7K) ΔP Pressure drop condenser 		m³/h kPa	3.4 9.8	4.3 12.5	5.7 8.5	6.8 9.0	2.2 3.1	3.2 3.9	3.8 4.4
 Heat source (Δt = 5K) ⁵ ΔP Pressure drop evaporator 		m³/h kPa	4.0 5.0	5.0 5.5	6.8 6.5	8.0 6.0	2.6 2.4	3.7 3.0	4.4 3.6
Operating pressure max. Water side Brine side		bar bar				6			
Operating limit values - see dia	agram range of ar					U			
Installation place operation ⁴ Storage	min./max. min./max.	°C °C				5/35 -15/50			
Electrical data ³									
Voltage Frequency Voltage range		V Hz V				3 x 400 50 380-420			
Operating pressure compress Starting current with starting c	urrent limiter 2		13.1 25.4	16.9 32.7	24.0 44.5	29.3 55.1	9.4 21.7	13.3 27.1	15.8 37.4
 Principal current (external prot with brine systems 	tection)	Type	16 C,D,K	20 C,D,K	32 C,D,K	32 C,D,K	16 C,D,K	16 C,D,K	20 C,D,K
 Principal current (external prot 	tection)	.) [-	20	25	32	40	16	20	25
with ground water systems • Control current (external prote	ection)		C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13	C,D,K 13
(p. 6.6	,	Туре			B,C,D,K,Z				

¹ kW = standard values according to EN 14511; values for B0W35 with 25 % ethylene glycol (Antifrogen N)

² Effective value, operating current compressor 1 + starting current with starting current limiter

Values for electrical data apply for supply voltage of 3 x 400 V
 <10 °C crankcase heater necessary

⁵ ΔT in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.

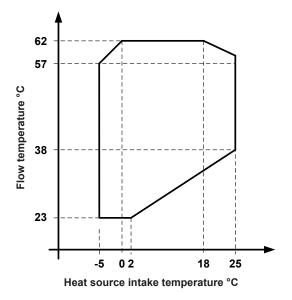
Hoval Thermalia® twin (20-42), twin H (13-22)

Sound emission

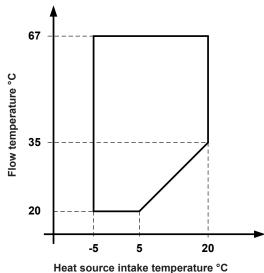
The effective sound pressure level 1 in the installation room is dependent on different factors like room size, absorptive capacity, reflection, free sound spreading etc.

Therefore it is important that the installation room lies, if possible, outside the noise-sensitive range and is supplied with sound-absorbing doors.

Ducts and pipes must be fixed to walls and ceiling in a way that no structure-borne sound is being transmitted to the system.


Thermalia® twin Thermalia® twin H			(0)	(26) (19)		(36) (22)		(42)		
Stage		1	1 2		1 2		1 2		1 2	
Sound power level dB(A) Sound pressure level dB(A) 1	dB(A) dB(A)	47 35	50 38	49 37	51 39	52 40	55 43	53 41	56 44	

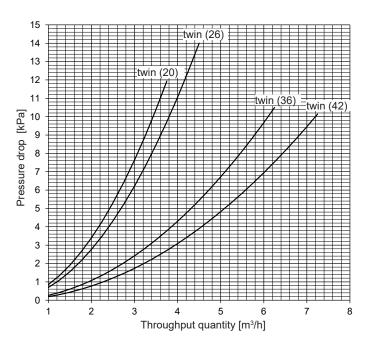
¹ Sound pressure level, distance 1 m (in standard room with approx. 5-6 dB(A) sound absorption)


Diagrams range of application

Heating and hot water

Thermalia® twin (20-42)

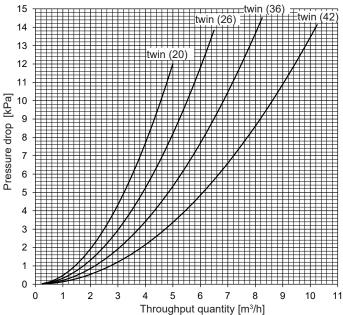
Thermalia® twin H (13-22)



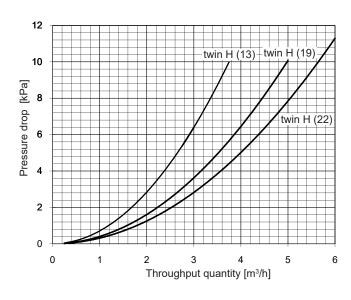
Hoval

■ Technical data

Hoval Thermalia® twin (20-42) Heating

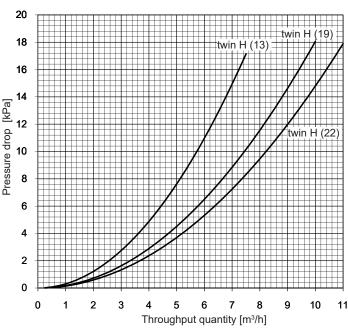

Pressure drop condenser with water

Heat source


Pressure drop evaporator

with ethylene glycol 25% (Antifrogen N)

Hoval Thermalia® twin H (13-22) Heating


Pressure drop condenser with water

Heat source

Pressure drop evaporator

with ethylene glycol 25% (Antifrogen N)

Refrigeration capacity

$$Q_0 = Q - P$$

Refrigeration capacity (kW)

Q Heat output (kW)

Ρ Power consumption compressor (kW)

 Δt_{2} Temperature difference heat source

supply/discharge (K)

0.89 (specific heat)

1.05 (specific weight, density)

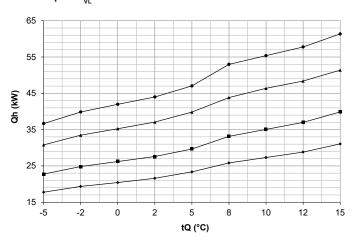
Volume flow evaporator

$$V = \frac{Q_0 \cdot c}{\Delta t_2 \cdot c_p \cdot \gamma} \quad (m^3/h)$$

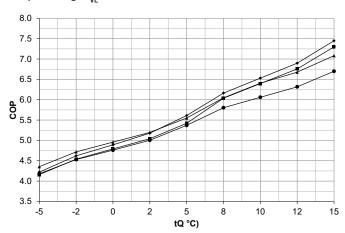
$$\Delta p$$
 (kPa) = Pressure drop with frost protection (1 kPa = 0.1 mWC)
 Δp = f x ΔP f Ethylene glycol % (Antifrogen N)
0.97 20
1 25

25 1.03 30

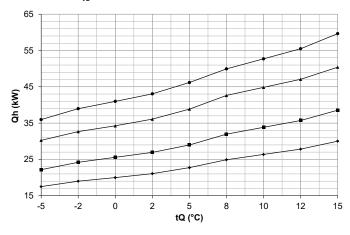
 Δp_{w} (kPa) = Pressure drop with water (1 kPa = 0.1 mWC)

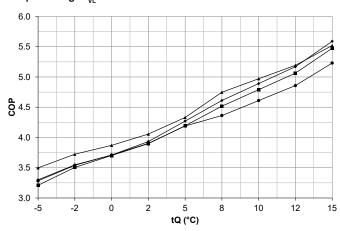

 $= \Delta P \times 0.89$ Δp_w

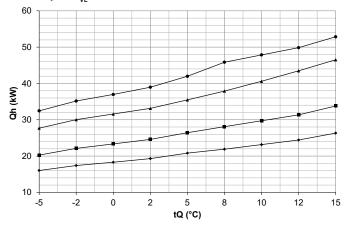
Performance data - heating

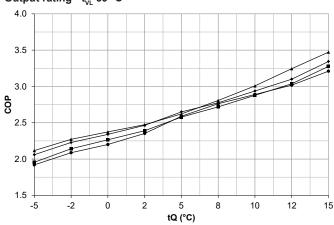

Maximum heat output

Hoval Thermalia® twin (20-42)


Heat output - t_{vL} 35 °C


Output rating - t_{VL} 35 °C


Heat output - t_{VL} 45 °C


Output rating - $t_{_{VL}}$ 45 °C

Heat output - $t_{_{VL}}$ 60 °C

Output rating - $t_{_{VL}}$ 60 °C

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

← Thermalia® twin (20)

Thermalia® twin (26)

Thermalia® twin (36)

Thermalia® twin (42)

Performance data - heating

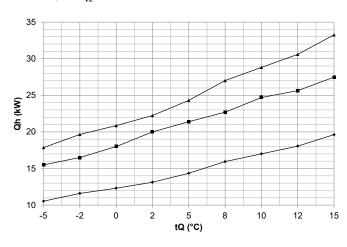
Hoval Thermalia® twin (20-42) Indications acc. to EN14511

Type	ns acc. to EN14			(20)			(26)			(36)			(42)	
tVL		tQ	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP
°C		°C	kW	kW		kW	kW		kW	kW		kW	kW	
		-5	18.1	3.7	4.85	23.3	4.9	4.77	31.4	6.3	4.96	36.8	7.9	4.68
		-2	19.8	3.7	5.32	25.4	4.9	5.22	34.2	6.3	5.42	40.3	7.9	5.11
	Brine	0	20.9	3.7	5.64	26.8	4.9	5.53	36.1	6.3	5.72	42.5	7.9	5.39
00		2	22.0	3.7	5.97	28.2	4.8	5.84	38.0	6.3	6.03	44.8	7.9	5.68
30		5	23.8	3.7	6.47	30.4	4.8	6.30	40.8	6.3	6.48	48.1	7.9	6.12
		8 10	26.3 27.8	3.6 3.6	7.33 7.76	33.7 35.7	4.7 4.7	7.18 7.61	44.4 47.2	6.4 6.4	6.96 7.43	54.5 56.7	8.0 8.0	6.84 7.10
	Water	10	27.6	3.6	8.20	35.7 37.6	4.7 4.7	8.03	47.2	6.3	7.43 7.74	58.9	8.0	7.10
		15	31.6	3.6	8.85	40.5	4.7	8.67	51.9	6.3	8.21	62.2	8.0	7.74
		-5	17.8	4.2	4.22	22.8	5.5	4.16	30.8	7.1	4.35	36.7	8.8	4.18
		-2	19.4	4.2	4.62	24.8	5.5	4.54	33.5	7.1	4.72	39.9	8.8	4.53
	Brine	0	20.4	4.2	4.89	26.2	5.5	4.79	35.3	7.1	4.96	42.0	8.8	4.76
		2	21.6	4.2	5.18	27.6	5.5	5.04	37.1	7.1	5.20	44.0	8.8	5.00
35		5	23.4	4.2	5.61	29.7	5.5	5.42	39.8	7.2	5.55	47.0	8.8	5.37
		8	25.8	4.2	6.16	33.1	5.5	6.04	43.8	7.3	6.05	53.0	9.1	5.80
	Water	10	27.3	4.2	6.53	35.1	5.5	6.40	46.4	7.2	6.41	55.4	9.1	6.06
	vvator	12	28.8	4.2	6.90	37.0	5.5	6.76	48.4	7.2	6.68	57.8	9.1	6.32
		15	31.1	4.2	7.45	39.9	5.5	7.30	51.4	7.3	7.08	61.4	9.2	6.70
		-5	17.6	4.8	3.71	22.5	6.2	3.63	30.5	7.9	3.88	36.3	9.9	3.68
	Dele	-2	19.2	4.8	4.02	24.5	6.2	3.96	33.1	7.9	4.17	39.4	9.9	3.98
	Brine	0	20.2	4.8	4.23	25.9	6.2	4.18	34.8 36.6	8.0 8.0	4.35	41.5	9.9 9.9	4.18 4.39
40		2 5	21.3 23.0	4.8 4.7	4.48 4.86	27.3 29.3	6.2 6.2	4.40 4.74	39.3	8.0 8.1	4.56 4.87	43.5 46.6	9.9 9.9	4.39 4.71
40		8	25.4	4.8	5.29	32.6	6.3	5.18	43.2	8.1	5.33	51.5	10.3	5.00
		10	26.8	4.8	5.61	34.5	6.3	5.49	45.6	8.1	5.61	54.0	10.3	5.25
	Water	12	28.3	4.8	5.92	36.4	6.3	5.80	47.7	8.2	5.85	56.6	10.3	5.51
		15	30.5	4.8	6.40	39.2	6.3	6.27	50.9	8.2	6.21	60.5	10.3	5.88
		-5	17.5	5.3	3.30	22.2	6.9	3.21	30.3	8.7	3.50	36.0	11.0	3.28
		-2	19.0	5.4	3.55	24.2	6.9	3.50	32.7	8.8	3.72	39.0	11.0	3.54
	Brine	0	20.0	5.4	3.71	25.6	6.9	3.70	34.3	8.9	3.87	41.0	11.0	3.71
		2	21.1	5.4	3.93	26.9	6.9	3.90	36.1	8.9	4.06	43.1	11.0	3.90
45		5	22.7	5.3	4.27	29.0	6.9	4.19	38.9	9.0	4.33	46.2	11.0	4.19
		8	24.9	5.4	4.61	32.0	7.1	4.52	42.6	9.0	4.75	49.9	11.4	4.36
	Water	10	26.4	5.4	4.89	33.8	7.1	4.79	44.8	9.0	4.97	52.7	11.4	4.61
		12	27.8	5.4	5.17	35.7	7.1	5.06	47.1	9.1	5.19	55.5	11.4	4.86
		15	30.0	5.4	5.59	38.5	7.0	5.48	50.4	9.1	5.52	59.6	11.4	5.23
		-5 -2	17.0 18.4	6.0 6.0	2.84 3.06	21.8 23.6	7.8 7.8	2.78 3.03	29.6 32.1	9.6 9.7	3.07 3.30	34.5 37.4	12.5 12.6	2.75 2.97
	Brine	0	19.4	6.1	3.20	24.9	7.8 7.8	3.20	33.8	9.7	3.45	39.4	12.6	3.12
	Dillie	2	20.4	6.1	3.38	26.1	7.7	3.37	35.2	9.8	3.60	41.6	12.6	3.31
50		5	22.0	6.0	3.65	28.0	7.7	3.63	37.2	9.7	3.84	44.7	12.4	3.59
50		8	24.0	6.1	3.92	30.8	8.0	3.84	42.1	10.1	4.18	48.7	13.0	3.76
	10/	10	25.4	6.1	4.15	32.6	8.0	4.07	44.2	10.1	4.36	51.3	12.9	3.96
	Water	12	26.8	6.1	4.39	34.4	8.0	4.30	46.3	10.2	4.55	53.8	12.9	4.17
		15	28.9	6.1	4.74	37.1	8.0	4.64	49.5	10.3	4.83	57.6	12.9	4.47
		-5	16.4	6.6	2.47	21.4	8.8	2.44	29.0	10.6	2.73	33.0	14.1	2.34
		-2	17.8	6.7	2.66	23.1	8.7	2.65	31.6	10.7	2.95	35.9	14.2	2.53
	Brine	0	18.8	6.7	2.79	24.2	8.6	2.80	33.3	10.8	3.10	37.9	14.2	2.66
		2	19.8	6.7	2.94	25.3	8.6	2.95	34.2	10.6	3.22	40.1	14.1	2.84
55		5	21.3	6.7	3.16	26.9	8.5	3.18	35.6	10.4	3.41	43.3	13.9	3.12
		8	23.1	6.9	3.37	29.7	9.0	3.30	41.5	11.2	3.72	47.5	14.5	3.28
	Water	10	24.5	6.9	3.57	31.4	9.0	3.50	43.6	11.2	3.88	49.9	14.5	3.45
		12 15	25.8	6.9	3.77	33.2	9.0	3.69	45.6	11.3	4.04	52.2	14.4	3.62
		15 -5	27.9 16.0	6.8	4.07	35.8	9.0	3.99	48.6 27.7	11.4 13.1	4.28	55.7 32.5	14.4 16.9	3.87 1.92
		-5 -2	17.4	7.8 7.8	2.06 2.23	20.3 22.1	10.4	1.96 2.14	30.0	13.1	2.12 2.27	32.5 35.2	16.8	2.09
	Brine	-2 0	18.3	7.8 7.8	2.23	23.3	10.3	2.14	31.6	13.2	2.27	35.2 37.0	16.8	2.09
	Dillic	2	19.3	7.8	2.46	24.6	10.3	2.39	33.1	13.4	2.47	39.0	16.6	2.35
60		5	20.8	7.9	2.65	26.4	10.3	2.58	35.5	13.4	2.62	42.0	16.0	2.59
		8	21.9	7.9	2.78	28.1	10.3	2.72	37.9	13.5	2.81	45.9	16.6	2.76
	14/-4-	10	23.2	7.9	2.94	29.7	10.3	2.88	40.6	13.5	3.01	47.9	16.6	2.89
	Water	12	24.4	7.9	3.10	31.4	10.3	3.04	43.5	13.4	3.24	49.9	16.5	3.02
		15	26.3	7.9	3.34	33.8	10.3	3.28	46.5	13.4	3.47	52.9	16.5	3.21

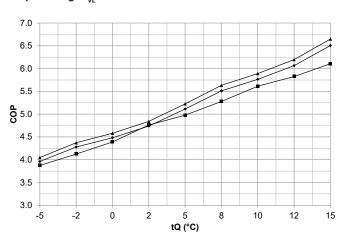
tVL = heating flow temperature (°C)

Take account of daily power cuts! see Engineering

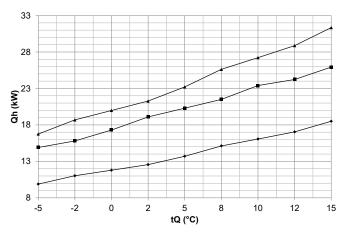
⁼ source temperature (°C)

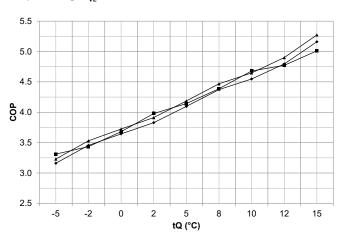

Qh = heat output at full load (kW), measured in accordance with standard EN 14511
P = power consumption of the overall unit (kW)
COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

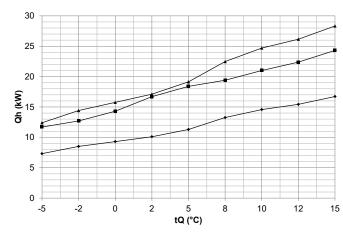
Performance data - heating

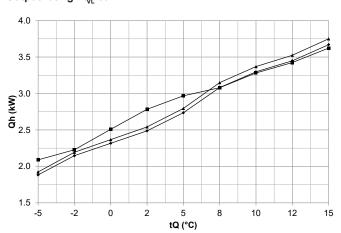

Maximum heat output

Hoval Thermalia® twin H (13-22)


Heat output - t_{VL} 35 °C


Output rating - $t_{_{VL}}$ 35 °C


Heat output - $t_{_{VL}}$ 45 °C


Output rating - t_{VL} 45 °C

Heat output - $t_{_{VL}}$ 60 °C

Output rating - $t_{_{VL}}$ 60 °C

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

◆ Thermalia[®] twin H (13)

Thermalia® twin H (19)

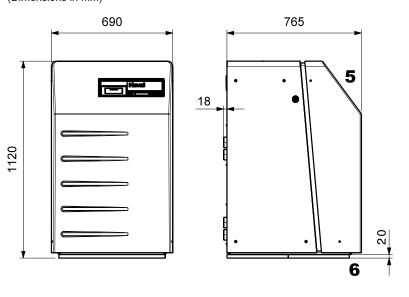
★ Thermalia® twin H (22)

Performance data - heating

Hoval Thermalia® twin H (13-22) Indications acc. to EN14511

Type	s acc. to EN1			H (13)			H (19)			H (22)	
tVL		tQ	Qh	P	COP	Qh	P	COP	Qh	Ρ	COP
°C		°C	kW	kW		kW	kW		kW	kW	
		-5	10.9	2.4	4.48	15.8	3.5	4.51	18.4	4.0	4.58
	Duine	-2	11.9	2.5	4.81	16.8	3.7	4.54	20.1	4.1	4.92
	Brine	0 2	12.6 13.4	2.5 2.5	5.03 5.33	18.4 20.5	3.7 3.8	4.97 5.39	21.3 22.7	4.1 4.2	5.14 5.45
30		5	14.7	2.5	5.78	22.0	3.9	5.64	24.9	4.2	5.91
		8	16.4	2.6	6.27	24.0	4.0	5.96	27.7	4.3	6.40
	Motor	10	17.5	2.7	6.57	25.3	4.0	6.33	29.6	4.4	6.72
	Water	12	-	-	-	-	-	-	-	-	-
		15	-	-	-	-	-	-	-		-
		-5	10.5	2.7	3.96	15.5	4.0	3.87	17.9	4.4	4.05
	Brine	-2 0	11.6 12.3	2.7 2.7	4.28 4.48	16.5 18.0	4.0 4.1	4.09 4.42	19.7 20.9	4.5 4.6	4.37 4.58
	Dille	2	13.1	2.8	4.74	20.0	4.1	4.76	22.2	4.6	4.84
35		5	14.3	2.8	5.11	21.4	4.3	4.98	24.3	4.7	5.23
		8	15.9	2.9	5.51	22.7	4.3	5.24	27.0	4.8	5.63
	Motor	10	17.0	3.0	5.76	24.7	4.4	5.61	28.8	4.9	5.89
	Water	12	18.1	3.0	6.06	25.6	4.4	5.83	30.6	4.9	6.20
		15	19.6	3.0	6.51	27.5	4.5	6.11	33.3	5.0	6.65
		-5	10.2	2.9	3.53	15.1	4.4	3.43	17.3	4.8	3.61
	Dring	-2	11.3	3.0	3.83	16.1	4.4	3.66	19.2	4.9	3.92
	Brine	0 2	12.1 12.8	3.0 3.0	4.03 4.25	17.6 19.5	4.5 4.6	3.91 4.24	20.4 21.8	5.0 5.0	4.12 4.34
40		5	14.0	3.1	4.56	20.8	4.7	4.43	23.8	5.1	4.66
10		8	15.5	3.2	4.89	22.0	4.8	4.58	26.3	5.3	5.00
	Water	10	16.5	3.2	5.10	24.0	4.8	5.00	28.0	5.4	5.21
	vvater	12	17.5	3.3	5.37	25.1	4.9	5.13	29.7	5.4	5.49
		15	19.1	3.3	5.77	26.8	5.0	5.36	32.3	5.5	5.90
		-5	9.9	3.1	3.16	14.9	4.5	3.31	16.8	5.2	3.23
	Duin	-2	11.0	3.2	3.45	15.8	4.6	3.43	18.7	5.3	3.53
	Brine	0 2	11.8 12.6	3.2 3.3	3.64 3.83	17.3 19.1	4.7 4.8	3.68 3.98	20.0 21.3	5.4 5.4	3.72 3.91
45		5	13.7	3.3	4.10	20.3	4.8	4.14	23.2	5.5	4.19
40		8	15.1	3.5	4.37	21.5	4.9	4.39	25.6	5.7	4.47
	14/2424	10	16.1	3.5	4.55	23.4	5.0	4.68	27.2	5.9	4.65
	Water	12	17.0	3.6	4.79	24.2	5.1	4.77	28.9	5.9	4.90
		15	18.5	3.6	5.16	25.9	5.2	5.01	31.4	5.9	5.27
		-5	9.0	3.4	2.67	13.8	4.9	2.82	15.3	5.6	2.73
	Deire	-2	10.2	3.4	2.95	14.8	4.9	3.02	17.3	5.7	3.02
	Brine	0 2	11.0	3.5	3.14	16.3	5.0	3.26	18.6	5.8	3.20 3.39
50		5	11.7 12.9	3.5 3.6	3.32 3.58	18.3 19.7	5.2 5.3	3.52 3.72	19.9 21.9	5.9 6.0	3.66
30		8	14.5	3.7	3.88	20.8	5.4	3.85	24.6	6.2	3.96
	14/-4	10	15.6	3.8	4.07	22.6	5.4	4.19	26.4	6.3	4.16
	Water	12	16.5	3.9	4.27	23.6	5.5	4.27	28.0	6.4	4.37
		15	17.9	3.9	4.58	25.4	5.6	4.54	30.3	6.5	4.68
		-5	8.2	3.6	2.25	12.8	5.2	2.46	13.9	6.0	2.30
	Deire -	-2	9.3	3.7	2.52	13.8	5.3	2.60	15.8	6.1	2.58
	Brine	0 2	10.1 10.9	3.8	2.70 2.87	15.3 17.5	5.4 5.6	2.83 3.13	17.2 18.5	6.2	2.76 2.94
55		5	12.1	3.8 3.9	3.13	17.5	5.7	3.33	20.5	6.3 6.4	3.20
00		8	13.9	4.0	3.45	20.1	5.8	3.47	23.5	6.7	3.53
	Motor	10	15.1	4.1	3.65	21.8	5.9	3.69	25.5	6.8	3.73
	Water	12	16.0	4.2	3.83	23.0	6.0	3.82	27.1	6.9	3.92
		15	17.3	4.2	4.09	24.8	6.2	4.03	29.3	7.0	4.18
		-5	7.3	3.9	1.88	11.7	5.6	2.09	12.4	6.4	1.92
	Duite -	-2	8.5	4.0	2.15	12.7	5.7	2.23	14.4	6.6	2.19
	Brine	0	9.3	4.0	2.32	14.3	5.7	2.51	15.8	6.7	2.37
60		2 5	10.1 11.3	4.1 4.1	2.49 2.74	16.7 18.4	6.0 6.2	2.78 2.97	17.1 19.1	6.7 6.8	2.54 2.80
00		8	13.3	4.1	3.08	19.4	6.3	3.08	22.5	7.1	3.15
		10	14.6	4.4	3.30	21.0	6.4	3.28	24.7	7.3	3.37
	Water	12	15.4	4.5	3.45	22.4	6.5	3.42	26.2	7.4	3.52
		15	16.7	4.6	3.67	24.3	6.7	3.62	28.3	7.6	3.75

tVL = heating flow temperature (°C)


= source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511
P = power consumption of the overall unit (kW)

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

Take account of daily power cuts! see Engineering

Hoval Thermalia® twin (20-42) and twin H (13-22) (Dimensions in mm)

	120	450	-		
	· •	•	.		•
			'		
	3	© 2			066
∀	4	1	•	ш	
	С			1	
	D	-			

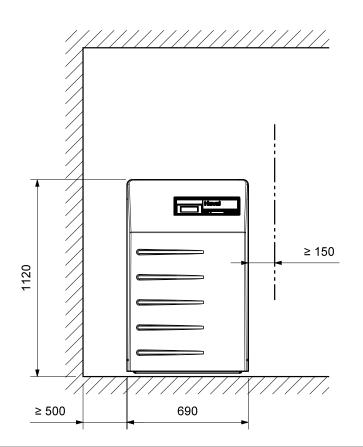
Туре	Α	В	С	D	E	F
Thermalia® twin (20-42)	741	222	274.5	481.5	170	689
Thermalia® twin H (13-22)	658	202	114	401	132	588

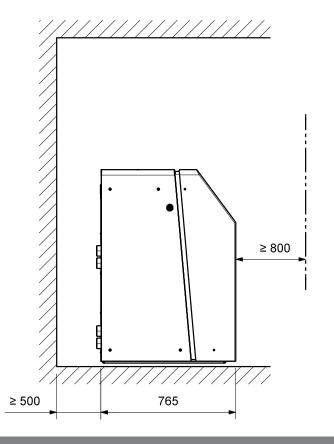
1 Heat source - discharge R 1½" Thermalia® twin (20,26), twin H (13,19) Heat source - discharge R 2" Thermalia® twin (36,42), twin H (22)

2 Heat source - inlet R 1½"
Thermalia® twin (20,26), twin H (13,19)
Heat source - inlet R 2"
Thermalia® twin (36,42), twin H (22)

3 Heating flow type R 2"

4 Heating return type R 2"

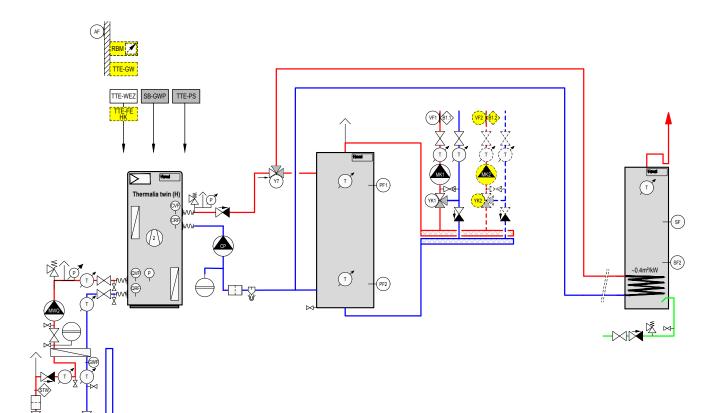

5 Operating panel


6 Vibration damping

7 Electrical connection

Required space (required wall distance in mm for operation and maintenance)

Front	Rear	Right or left side
min. 800	min. 500	min. 500


■ Examples

Thermalia® twin

Brine/water-water/water heat pump with

- water/water indirect utilisation
- energy storage buffer tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematic BBBCE070

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

TTE-WEZ	TopTronic [®] E basic module heat generator (installed)
116-4462	Top from a basic module fleat generator (mistalled)
TTF-PS	TopTronic® F PufferModul

TTE-PS TopTronic® E PufferModul
SB-GWP System module ground water pump

SB-GWP System module ground water pump VF1 Flow temperature sensor 1

B1.1 Flow temperature guard (if required)

MK1 Pump mixer circuit 1 YK1 Actuator mixer 1 AF Outdoor sensor SF Calorifier sensor SF2 Calorifier sensor 2 PF1 Buffer sensor 1 PF2 Buffer sensor 2 Υ7 Switching valve GWF Frost controller STW Flow controller CP Condenser pump

MWQ Delivery pump in heat source intermediate circuit

Ground water pump Delivery pump in he (cold-water design)

Option

GWP

RBM TopTronic® E room control module

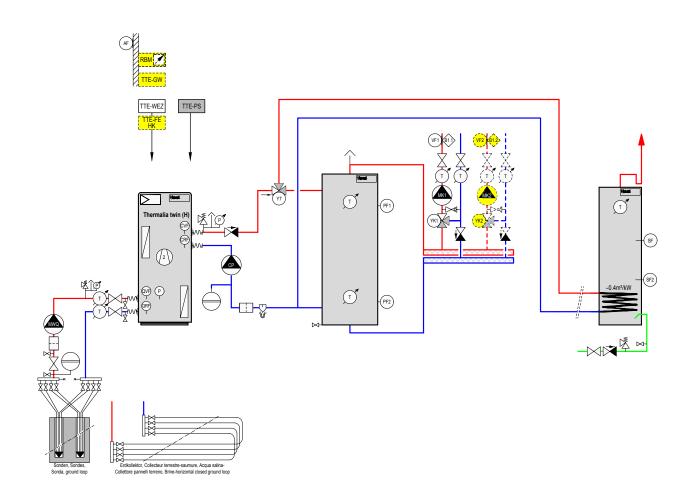
TTE-GW TopTronic® E Gateway

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 Flow temperature sensor 2

B1.2 Flow temperature guard (if required)

MK2 Pump mixer circuit 2 YK2 Actuator mixer 2


■ Examples

Thermalia® twin

Brine/water-water/water heat pump with

- earth probes
- energy storage buffer tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematic BBBCE030

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

TTE-WEZ	TopTronic® E basic module heat generator (installed)
TTE-PS	TopTronic® E buffer module
VF1	Flow temperature sensor 1
B1.1	Flow temperature guard (if required)
M/L/1	Dump mivor circuit 1

IVII'\ I	Pump mixer circuit
YK1	Actuator mixer 1
AF	Outdoor sensor
SF	Calorifier sensor
SF2	Calorifier sensor 2
PF1	Buffer sensor 1
PF2	Buffer sensor 2
Y7	Switching valve
CP	Condenser pump

CP Condenser pump

MWQ Delivery pump in heat source intermediate circuit

(cold-water design)

Option
RBM TopTronic® E room control module
TTE-GW TopTronic® E Gateway

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 Flow temperature sensor 2

B1.2 Flow temperature guard (if required)

MK2 Pump mixer circuit 2 YK2 Actuator mixer 2

Description

Hoval Thermalia® dual Brine/water-water/water heat pump

- · Compact unit with high energy efficiency
- Extremely quiet running thanks to 3-bearing construction
- Stable steel frame structure, a ground plate including vibration-free machine adjustable feet
- Removable, powder-coated sheet steel side panels and front doors with quick-release fasteners
- All casing parts are sound-insulated and thermally insulated
- Colour of side panels, ceiling and rear side: brown red (RAL 3011)
- Colour of doors: flame red (RAL 3000)
- · 2 spiral (scroll) compressors
- With plate heat exchanger (condenser and evaporator) made of stainless steel (1.4401), soldered
- Two separate refrigerant circuits with electronic expansion valves, filter dryer with sight glass, liquid receivers and high-pressure and low-pressure sensors
- Electronic initial current limiter with rotating field and phase monitoring
- · Integrated brine pressure monitoring
- · Two output levels
- Hydraulic connections with flexible hoses and flanges

Thermalia® dual, dual R (55-85): 2" 4x 1 m Thermalia® dual, dual R (110,140): flange DN80/PN6

Thermalia® dual H (35-70): 2" 4x 1 m Thermalia® dual H (90): flange DN80/PN6

- Working media Thermalia® dual, dual R (55-140) with R410A
- Thermalia® dual H (35-90) with R134a
- · Heat pump wired and ready to connect
- Operating side on front with integrated TopTronic[®] E controller

TopTronic® E controller

Control panel

- Colour touchscreen 4.3 inch
- Heat generator blocking switch for interrupting operation
- Fault signalling lamp

TopTronic® E control module

- · Simple, intuitive operating concept
- Display of the most important operating statuses
- · Configurable start screen
- · Operating mode selection
- · Configurable day and week programmes
- Operation of all connected Hoval CAN bus modules
- Commissioning wizard
- Service and maintenance function
- Fault message management
- Analysis function
- Weather display (with online HovalConnect)
- Adaptation of the heating strategy based on the weather forecast (with online HovalConnect)

			2		FI	OW/	Heat	outnut	Cooling	canacity
	water				min.	max.	B0W35	W10W35	B17W9	B25W18
55 °C	35 °C	55 °C	Type	Refrigerant	°C	°C	kW	kW	kW	kW
Α***	A***	A**	(55)	2 x R410A	-	62	57.9	76.7	-	-
	Α***	A**	(70)	2 x R410A	-	62	73.2	97.2	-	-
			(85)	2 x R410A	-	62	84.8	112.8	-	-
			(110)	2 x R410A	-	62	113.4	149.1	-	-
			(140)	2 x R410A	-	62	137.8	181.1	-	-
Α***	A***	A**	H (35)	2 x R134a	-	70	34.9	49.3	-	-
A***	Α	A ⁺⁺	H (50)	2 x R134a	-	70	52.5	71.8	-	-
	A***	A**	H (70)	2 x R134a	-	70	70.9	97.1	-	-
			H (90)	2 x R134a	-	70	87.3	119.5	-	-
Α***	Α***	A**	R (55)	2 x R410A	7	62	57.9	76.7	64.7	81.1
	Α***	A**	R (70)	2 x R410A	7	62	73.2	97.2	86.2	108.3
			R (85)	2 x R410A	7	62	84.8	112.8	107.0	127.7
			R (110)	2 x R410A	7	62	113.4	149.1	138.1	165.0
			R (140)	2 x R410A	7	62	137.8	181.1	156.9	183.9
	55 °C	water 55 °C 35 °C A A A A A A A A A A	Brine/ water 55 °C 35 °C 55 °C ATT ATT ATT ATT ATT ATT ATT ATT ATT AT	Brine/ water 55 °C 35 °C 55 °C Type A** A** A** A** A** A** A** A	Brine/ water 55 °C 35 °C 55 °C Type Refrigerant A** A** A** (55) 2 x R410A (70) 2 x R410A (85) 2 x R410A (110) 2 x R410A (140) 2 x R410A A** A** A** A** A** A** A**	Brine/ water 55 °C 35 °C 55 °C Type Refrigerant °C A*** A*** A*** A*** (55) 2 x R410A - (85) 2 x R410A - (110) 2 x R410A - (140) 2 x R410A - A*** A** A*** A***	Brine/ water 55 °C 35 °C 55 °C Type Refrigerant °C °C °C A** A** (55) 2 x R410A - 62 (85) 2 x R410A - 62 (110) 2 x R410A - 62 (140) 2 x R410A - 70 A** H (50) 2 x R134a - 70 H (90) 2 x R134a - 70 H (90	Brine/ water	Brine/ water	Brine/ water

Energy efficiency class of the compound system with control

Seal of approval FWS

The Thermalia® dual (55-140), dual H (35-90) series are certified by the seal of approval of the authorisation commission of Switzerland

TopTronic® E basic module heat generator (TTE-WEZ)

- · Control functions integrated for
 - 1 heating/cooling circuit with mixer
 - 1 heating/cooling circuit without mixer
 - 1 hot water loading circuit
- bivalent and cascade management
- Outdoor sensor
- Immersion sensor (calorifier sensor)
- Contact sensor (flow temperature sensor)
- · Rast-5 basic plug set

Options for TopTronic® E controller

- Can be expanded by max.
- 1 module expansion:
- module expansion heating circuit or
- module expansion universal
- module expansion heat accounting
- Can be networked with a total of up to 16 controller modules:
 - heating circuit/hot water module
 - solar module
 - buffer module
 - measuring module

Number of modules that can be additionally installed in the heat generator:

- 1 module expansion and 1 controller module **or**
- 2 controller modules

The supplementary plug set must be ordered in order to use expanded controller functions.

Further information about the TopTronic® E see "Controls"

Electrical connections

· Connection at rear

Delivery

Heat pump pre-assembled and packed

Part No.

■ Part No.

Notice

Suitable heat source and charging pumps:

Hoval system pump set SPS-I with interface for pump control Type 0-10 V or PWM1

Premium pump Stratos

with IF module Stratos Ext. Off (0-10 V)

See brochure "Accessories" - chapter "Circulating pumps"

Energy efficiency class see Description

Hoval Thermalia® dual Brine/water or water/water heat pump

Brine/water-water/water heat pump with 2 hermetic spiral (scroll) compressors for indoor installation with built-in Hoval TopTronic® E control

Integrated control functions for

- 1 heating/cooling circuit with mixer
- 1 heating/cooling circuit without mixer
- 1 hot water loading circuit
- bivalent and cascade management
- · Can be optionally expanded by max. 1 module expansion:
 - module expansion heating circuit or
 - module expansion universal or
 - module expansion heat balancing
- · Can be optionally networked with a total of up to 16 controller modules (incl. solar module)

Delivery

Compact unit wired-up internally ready for connection, supplied fully packaged incl. connection hoses 2" or weld-on flanges DN80/PN6

Hoval Thermalia® dual

Working medium R410A, 2 circuits.

Max. flow temperature 62 °C

Thermalia [®]	Heat output				
dual	for B0W35	for W10W35			
type	kW	kW			
(55)	57.9	76.7			
(70)	73.2	97.2			
(85)	84.8	112.8			
(110)	113.4	149.1			
(140)	137.8	181.1			

Hoval Thermalia® dual H

Working medium R134a, 2 circuits.

Max. flow temperature 70 °C

Thermalia [®]	Heat	output	
dual H type	for B0W35 kW	for W10W35 kW	
H (35)	34.9	49.3	7014 296
H (50)	52.5	71.8	7014 297
H (70)	70.9	97.1	7014 298
H (90)	87.3	119.5	7014 299

Hoval Thermalia® dual R

Working medium R410A, 2 circuits.

Max. flow temperature 62 °C

Thermalia [®] dual R type	Cooling of for B17W9 kW	capacity ¹⁾ for B25W18 kW	
R (55)	64.7	81.1	7016 550
R (70)	86.2	108.3	7016 551
R (85)	107.0	127.7	7016 552
R (110)	138.1	165.0	7016 553
R (140)	156.9	183.9	7016 554
1) Heat output	t: see Hoval The	ermalia® dual	

Accessories Part No.

Sound attenuation cowl for compressor

for reducing the transmission of noise. In heat pumps with two compressors, it is mandatory for two sound attenuation cowls to be ordered.

Thermalia® dual type	Number of compressors	
(55)	2	2069 701
(70)	2	2069 706
(85)	2	2069 707
(110)	2	2069 708
(140)	2	2069 708
H (35)	2	2069 703
H (50)	2	2069 705
H (70)	2	2069 704
H (90)	2	2069 704
R (55)	2	2069 701
R (70)	2	2069 706
R (85)	2	2069 707
R (110)	2	2069 708
R (140)	2	2069 708

Set of sound attenuation feet 65/75

for Thermalia® dual (55, 70), H (35, 50), dual R (55,70)

for reducing the transmission of solid-borne noise

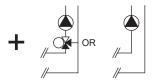
Set consisting of 4 vibration-damping adjustable feet, threaded rod and locknut

Elastomer part material: NR, black Housing material: galvanised steel, chromated

Set of sound attenuation feet 45/55,

for Thermalia® dual (85, 110, 140), H (70, 90), dual R (85, 110, 140) for reducing the transmission of solid-borne noise

Set consisting of 4 vibration-damping adjustable feet, threaded rod and locknut


Elastomer part material: NR, black Housing material: galvanised steel, chromated

6045 228

6045 229

for TopTronic® E basic module heat generator

TopTronic® E module expansion heating circuit TTE-FE HK

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating circuit without mixer or
- 1 heating circuit with mixer

incl. fitting accessories 1x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Notice

The supplementary plug set may have to be ordered to implement functions differing from the standard!

TopTronic® E module expansion heating circuit incl. energy balancing TTE-FE HK-EBZ

Expansion to the inputs and outputs of the basic module heat generator or the heating circuit/domestic hot water module for implementing the following functions:

- 1 heating/cooling circuit w/o mixer or
- 1 heating/cooling circuit with mixer in each case incl. energy balancing

incl. fitting accessories 3x contact sensor ALF/2P/4/T L = 4.0 m

Can be installed in: Boiler control, wall housing, control panel

Notice

Suitable flow rate sensors (pulse sensors) must be provided on site.

TopTronic® E module expansion Universal TTE-FE UNI

Expansion to the inputs and outputs of a controller module (basic module heat generator, heating circuit/domestic hot water module, solar module, buffer module) for implementing various functions

incl. fitting accessories

Can be installed in: Boiler control, wall housing, control panel

Further information

see "Controls" - "Hoval TopTronic® E module expansions" chapter

Notice

Refer to the Hoval System Technology to find which functions and hydraulic arrangements can be implemented.

Part No.

6034 576

6037 062

6034 575

HovalConnect available from summer 2019

Up to that point, TopTronic® E online is delivered.

Further information see "Controls"

Accessories for TopTronic® E Part No. Supplementary plug set for basic module heat generator (TTE-WEZ) 6034 499 for controller modules and module expansion 6034 503 TTE-FE HK TopTronic® E controller modules TTE-HK/WW TopTronic® E heating circuit/ 6034 571 hot water module TTE-SOL TopTronic® E solar module 6037 058 TopTronic® E buffer module 6037 057 TTE-PS TopTronic® E measuring module 6034 574 TTE-MWA TopTronic® E room control modules TTE-RBM TopTronic® E room control modules easy white 6037 071 comfort white 6037 069 6037 070 comfort black 6039 253 Enhanced language package TopTronic® E one SD card required per control module Consisting of the following languages: HU, CS, SL, RO, PL, TR, ES, HR, SR, JA, DA HovalConnect HovalConnect domestic starter LAN 6049 496 HovalConnect domestic starter WLAN 6049 498 HoyalConnect commercial starter LAN 6049 495 HovalConnect commercial starter WLAN 6049 497 SMS remote control unit 6018 867 System component SMS remote control unit 6022 797 TopTronic® E interface modules GLT module 0-10 V 6034 578 HovalConnect domestic starter Modbus 6049 501 HovalConnect domestic starter KNX 6049 593 HovalConnect commercial starter Modbus 6049 500 HovalConnect commercial starter KNX 6049 502 TopTronic® E wall casing 6035 563 WG-190 Wall casing small WG-360 Wall casing medium 6035 564 WG-360 BM Wall casing medium with 6035 565 control module cut-out WG-510 Wall casing large 6035 566 WG-510 BM Wall casing large with 6038 533 control module cut-out TopTronic® E sensors AF/2P/K Outdoor sensor 2055 889 TF/2P/5/6T 2055 888 Immersion sensor, L = 5.0 m ALF/2P/4/T Contact sensor, L = 4.0 m 2056 775 TF/1.1P/2.5S/6T Collector sensor, L = 2.5 m 2056 776 System housing 6038 551 System housing 182 mm System housing 254 mm 6038 552 Bivalent switch 2061 826

Outdoor sensor, immersion sensor and contact sensor supplied with the heat pump.

Float ball flow switch

nominal pressure 10 bar installed length 335 mm bistable reed contact as normally open contact Contact open, if there is no flow

Area of application I/h °C	Connection	
1500-15000 0-80	Rp 2"	2040 709
3000-30000 0-80	DN 65	2064 164
8000-60000 0-80	DN 65	2064 165

For active cooling, the installation of a flow controller is mandatory!

Part No.

Expansion connector set

for the automatic heat pump ECR461. Use for additional function:

- Flow monitor
- Crankcase bottom heating (included in the scope of delivery for Belaria® twin A, twin AR, dual AR)
- Condensation drain heating
- Heat quantity metering Plugs:
- 1x 230V digital input
- 2x 230V outputs
- 4x low-voltage inputs
- 1x ratio. Input

Frost protection temperature switch 270XT-95068

to heat source ground water Type of protection: IP 40 Area of application: -24/18 °C 2007 313

Freeze protection concentrate PowerCool DC 924-PXL

on basis propylene glycol completely mixable with water with corrosion protection Frost protection: -20 °C with 40 % mixture ratio Content plastic container: 10 kg 2009 987

Service

Commissioning

Commissioning by works service or Hoval trained authorised serviceman/company is condition for warranty.

For commissioning and other services please contact your Hoval sales office.

Hoval Thermalia® dual (55-140) with R410A

noval Illerillalia dual (55-140) with K410A						
Туре		(55)	(70)	(85)	(110)	(140)
Seasonal coefficient of performance moderate climate (brine) 35 °C /55 °C	SCOP	5.1/3.7	5.0/3.7	5.1/3.7	5.1/3.7	5.0/3.7
Performance data acc. to EN 14511 Heat output B0W35 Power consumption B0W35 Performance B0W35	kW kW COP	57.9 12.5 4.63	73.2 15.9 4.60	84.8 18.3 4.63	113.4 27.9 4.62	137.8 29.9 4.61
Heat output W10W35Power consumption W10W35Performance W10W35	kW kW COP	76.9 12.7 6.07	97.2 16.6 5.87	112.8 19.1 5.91	149.1 26.0 5.73	181.1 31.3 5.79
Sound data according to EN 12102 • Sound power level	dB(A)	57.2	55.7	57.2	64.2	64.2
Hydraulic data brine/water						
Maximum flow temperatureOperating pressure	°C bar	62 6	62 6	62 6	62 6	62 6
 B0W35 Heating water spread Required volume flow Pressure drop, condenser Condenser connections 	K m³/h kPa R ext. thread	5 10.1 6.9 2"	5 12.7 9.7 2"	5 14.3 10.7 2"	5 19.3 13.7 DN80/PN6	5 23.4 11.5 DN80/PN6
B0W35 • Brine spread • Required volume flow • Pressure drop, evaporator • Evaporator connections	K m³/h kPa R ext. thread	3 14.1 14.3 2"	4 13.4 9.7 2"	4 15.1 10.7 2"	4 20.4 13.7 DN80/PN6	5 19.8 11.5 DN80/PN6
Hydraulic data water/waterMaximum flow temperatureOperating pressure	°C bar	62 6	62 6	62 6	62 6	62 6
 W10/B7W35 (intermediate circuit) Heating water spread Required volume flow Pressure drop, condenser Condenser connections 	K m³/h kPa R ext. thread	5 12.0 6.9 2"	5 14.8 9.7 2"	5 16.8 10.7 2"	5 22.8 13.7 DN80/PN6	5 27.8 11.5 DN80/PN6
 W10/B7W35 (intermediate circuit) Ground water spread ¹ Required volume flow GW Pressure drop, evaporator Evaporator connections 	K m³/h kPa R ext. thread	3 16.3 14.3 2"	4 15.1 9.7 2"	4 17.1 10.7 2"	4 23.3 13.7 DN80/PN6	5 22.6 11.5 DN80/PN6
Refrigerating data						
 Refrigerant Refrigerant filling quantity Compressor oil filling quantity (Type of compressor oil: DAPHNE HERMETIC OIL FV 	kg kg /C32D for dual (55), E	2x6,0 2x2,46 EMKARATE	2x7,4 2x3,30 E® RL 32HB - 160S2	R410A 2x8,2 2x3,60 Z - 160Z)	2x10,0 2x6,70	2x10,7 2x6,70
Electrical data						
 Power supply Max. power consumption (without pumps) Max. operating current (without pumps) Max. starting current 	V kW A A	24.8 45.6 85.3	3+N~6 30.4 51.0 100.5	400 V / 5 34.6 58.2 114.1	0 Hz 46.6 75.6 160.3	56.6 93.2 186.6
Main current fuse (on site)Control current fuse (on site)	A A	C63 16	C63 16	C80 16	C100 16	C125 16
Dimensions / weight						
 Dimensions (H x W x D) Minimum size of the installation room (without ventilation) 	mm m³	16	1907 x 1066 x 774 17	19	1907 x 13 26	316 x 774 31
• Weight	kg	560	620	700	770	820

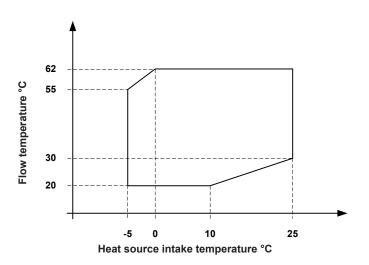
 $^{^1}$ ΔT in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.

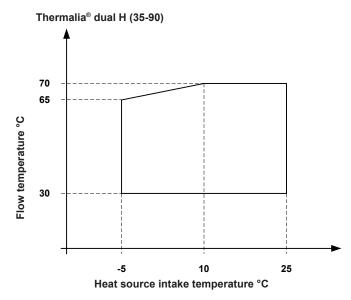
(** ***)					
Туре		H (35)	H (50)	H (70)	H (90)
Seasonal coefficient of performance moderate climate (brine) 35 °C /55 °C	SCOP	4.6/3.5	4.8/3.6	4.8/3.5	4.7/3.5
Performance data acc. to EN 14511					
Heat output B0W35Power consumption B0W35Performance B0W35	kW kW COP	34.9 8.1 4.31	52.5 12.0 4.38	70.9 16.3 4.35	87.3 20.3 4.30
Heat output W10W35Power consumption W10W35Performance W10W35	kW kW COP	49.3 8.2 6.01	71.8 12.3 5.83	97.1 16.8 5.78	119.5 21.1 5.66
Sound data according to EN 12102					
Sound power level	dB(A)	55.2	60.2	63.2	63.2
Hydraulic data brine/water					
Maximum flow temperature Operating pressure	°C bar	70 6	70 6	70 6	70 6
B0W35 • Heating water spread • Required volume flow • Pressure drop, condenser • Condenser connections	K m³/h kPa R ext. thread	5 5.5 9.3 2"	5 9.0 5.1 2"	5 12.1 5.8 2"	5 15.1 7.2 DN80/PN6
B0W35 Brine spread Required volume flow Pressure drop, evaporator Evaporator connections	K m³/h kPa R ext. thread	3 8.9 9.2 2"	3 12.4 5.7 2"	4 12.6 8.3 2"	4 15.7 9.0 DN80/PN6
Hydraulic data water/water					
Maximum flow temperature Operating pressure	°C bar	70 6	70 6	70 6	70 6
W10/B7W35 (intermediate circuit) Heating water spread Required volume flow Pressure drop, condenser Condenser connections	K m³/h kPa R ext. thread	5 8.5 14.5 2"	5 11.4 5.1 2"	5 15.2 5.8 2"	5 18.9 7.2 DN80/PN6
 W10/B7W35 (intermediate circuit) Ground water spread ¹ Required volume flow GW Pressure drop, evaporator Evaporator connections 	K m³/h kPa R ext. thread	3 10.9 20.0 2"	3 15.3 25.2 2"	4 15.3 25.2 2"	4 19.1 19.6 DN80/PN6
Refrigerating data					
 Refrigerant Refrigerant filling quantity Compressor oil filling quantity (Type of compressor oil: EMKARATE® RL 32HB - 160SZ 	kg kg :- 160Z)	2x5.4 2x3.3	R13 2x8.0 2x6.2	2x8.2 2x8.0	2x9.0 2x8.0
Electrical data					
 Power supply Max. power consumption (without pumps) Max. operating current (without pumps) Max. starting current 	V kW A A	17.4 32.0 76.0	3+N~400 25.6 45.6 107.8	V / 50 Hz 34.8 58.6 151.8	44.2 75.8 182.9
Main current fuse (on site)Control current fuse (on site)	A A	C50 16	C63 16	C80 16	C100 16
Dimensions / weight					
 Dimensions (H x W x D) Minimum size of the installation room (without ventilation) 	mm m³	1907 x 1066 x 774 22	24	1907 x 1316 x 774 27	36
Weight	kg	491	700	770	800

¹ \(\Delta \text{T}\) in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.

Hoval Thermalia® dual R (55-140) with R410A

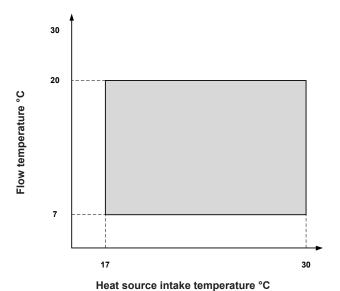
(00 110)						
Type		R (55)	R (70)	R (85)	R (110)	R (140)
Seasonal coefficient of performance moderate climate (brine) 35 °C /55 °C	SCOP	5.1/3.7	5.0/3.7	5.1/3.7	5.1/3.7	5.0/3.7
Performance data acc. to EN 14511						
Heat output B0W35Power consumption B0W35Performance B0W35	kW kW COP	57.9 12.5 4.63	73.2 15.9 4.60	84.8 18.3 4.63	113.4 27.9 4.62	137.8 29.9 4.61
Heat output W10W35Power consumption W10W35Performance W10W35	kW kW COP	76.9 12.7 6.07	97.2 16.6 5.87	112.8 19.1 5.91	149.1 26.0 5.73	181.1 31.3 5.79
Cooling capacity B17W9Power consumption B17W9Performance B17W9	kW kW EER	64.7 10.6 6.12	86.2 13.1 6.6	107.0 14.8 7.21	138.1 21.2 6.51	156.9 25.9 6.05
Cooling capacity B25W18Power consumption B25W18Performance B25W18	kW kW EER	81.1 12.6 6.44	108.3 16.2 6.71	127.7 18.4 6.95	165.0 26.2 6.31	183.9 30.4 6.04
Sound data according to EN 12102						
Sound power level	dB(A)	57.2	55.7	57.2	64.2	64.2
Hydraulic data brine/water						
Maximum flow temperature Operating pressure	°C bar	62 6	62 6	62 6	62 6	62 6
 BOW35 Heating water spread Required volume flow Pressure drop, condenser Condenser connections 	K m³/h kPa R AG	5 10.1 6.9 2"	5 12.7 9.7 2"	5 14.3 10.7 2"	5 19.3 13.7 DN80/PN6	5 23.4 11.5 DN80/PN6
 BOW35 Brine spread Required volume flow Pressure drop, evaporator Evaporator connections 	K m³/h kPa R AG	3 14.1 14.3 2"	4 13.4 9.7 2"	4 15.1 10.7 2"	4 20.4 13.7 DN80/PN6	5 19.8 11.5 DN80/PN6
Hydraulic data water/water						
Maximum flow temperatureOperating pressure	°C bar	62 6	62 6	62 6	62 6	62 6
W10/B7W35 (intermediate circuit) Heating water spread Required volume flow Pressure drop, condenser Condenser connections	K m³/h kPa R AG	5 12.0 6.9 2"	5 14.8 9.7 2"	5 16.8 10.7 2"	5 22.8 13.7 DN80/PN6	5 27.8 11.5 DN80/PN6
 W10/B7W35 (intermediate circuit) Ground water spread ¹ Required volume flow GW Pressure drop, evaporator Evaporator connections 	K m³/h kPa R AG	3 16.3 14.3 2"	4 15.1 9.7 2"	4 17.1 10.7 2"	4 23.3 13.7 DN80/PN6	5 22.6 11.5 DN80/PN6
Refrigerating data	IVAO	2	2	2	DIVOOTI IVO	DINOO/I INO
 Refrigerant Refrigerant filling quantity Compressor oil filling quantity (Type of compressor oil: DAPHNE HERMETIC OIL FV 	kg dm³ C32D for dual (2x6.0 2x2.46 (55), EMKA	2x7.4 2x3.3 \RATE® RL 32HB - 16	R410A 2x8.2 2x3.6 0SZ - 1602	2x10.0 2x6.7 <u>Z</u>)	2x10.7 2x6.7
Electrical data						
 Power supply Max. power consumption (without pumps) Max. operating current (without pumps) Max. starting current 	V kW A A	24.8 45.6 85.3	3+N- 30.4 51.0 100.5	-400 V / 50 34.6 58.2 114.1	Hz 46.6 75.6 160.3	56.6 93.2 186.6
Main current fuse (on site)Control current fuse (on site)	A A	C63 16	C63 16	C80 16	C100 16	C125 16
Dimensions / weight						
 Dimensions (H x W x D) Minimum size of the installation room (without ventilation) 	mm m³	27.2	1907 x 1066 x 774 33.6	37.3	1907 x 13 45.5	316 x 774 48.6
• Weight	kg	560	620	700	770	820


¹ \(\Delta T\) in accordance with regional regulations. The temperature difference is adjustable from 3 to 6 kelvin. The pump regulates the volumetric current to the set temperature difference.



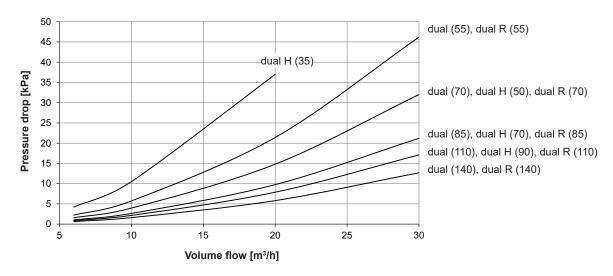
Diagrams range of application

Heating and hot water


Thermalia® dual (55-140), dual R (55-140)

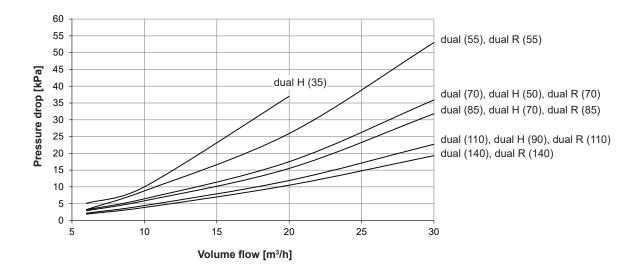
Cooling

Thermalia® dual R (55-140)



Heating

Pressure drop condenser


with water

Heat source

Pressure drop evaporator

with ethylene glycol 25 % (antifrogen N)

Cooling capacity

$$Q_0 = Q - P$$

Q₀ = cooling capacity (kW)

Q = heat output (kW)

P = power consumption compressor (kW) $<math>\Delta t_2 = temperature difference heat source$

supply/discharge(K)

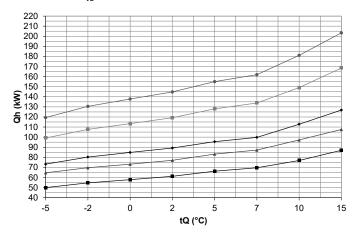
C = 0.86

c_n = 0.89 (specific heat)

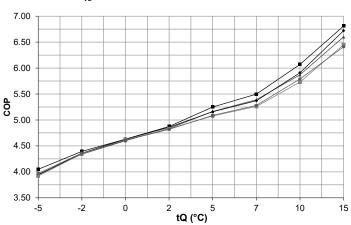
 γ^r = 1.05 (specific weight, density)

Volume flow evaporator

$$V = \frac{Q_0 \cdot c}{\Delta t_2 \cdot c_p \cdot \gamma} (m^3/h)$$

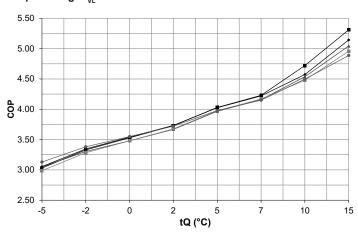

 $\Delta p_{_W}$ (kPa) $\,=$ Pressure drop with water (1 kPa = 0.1 mWC) $\Delta p_{_W}$ $\,=$ $\Delta P \times 0.89$

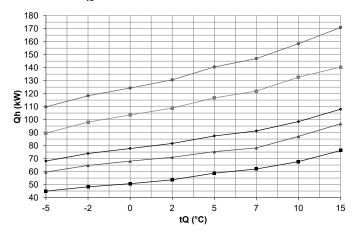
Performance data - heating

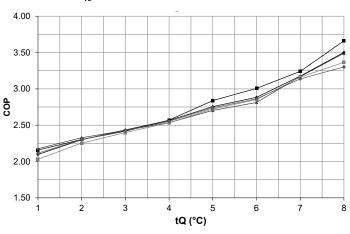

Maximum heat output

Hoval Thermalia® dual (55-140), dual R (55-140) with R410A

Heat output - t_{VL} 35 °C


Output rating - t_{VL} 35 °C


Heat output - $t_{_{VL}}$ 45 °C


Output rating - $t_{_{VL}}$ 45 °C

Heat output - $t_{_{VL}}$ 62 °C

Output rating - t_{VL} 62 °C

- tVL = heating flow temperature (°C)
- tQ = source temperature (°C)
- Qh = heat output at full load (kW), measured in accordance with standard EN 14511
- COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511
- -■- Thermalia® dual, dual R (55)
- Thermalia® dual, dual R (70)
- → Thermalia® dual, dual R (85)
- Thermalia® dual, dual R (110)
- Thermalia® dual, dual R (140)

Performance data - heating

Hoval Thermalia® dual (55-140), dual R (55-140)

Indications acc. to EN 14511

Type			(5	55), R (5	55)	(7	'0), R (7	' 0)	(8	5), R (8	5)	(11	0), R (1	10)	(14	0), R (1	40)
tVL		tQ	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP	Qh	Р	COP
°C		°C	kW	kW		kW	kW		kW	kW		kW	kW		kW	kW	
		-5	50.6	10.9	4.67	65.6	14.3	4.59	74.0	15.6	4.74	100.1	21.2	4.71	121.5	25.4	4.79
		-2	55.9	10.9	5.12	70.6	13.8	5.12	81.2	15.5	5.24	109.0	20.9	5.22	132.6	25.3	5.24
	Brine	0 2	59.3 62.6	11.0 11.0	5.41 5.68	74.1 78.2	13.6 13.5	5.47 5.77	86.0 90.5	15.5 15.5	5.56 5.83	115.0 121.1	20.8 20.9	5.54 5.79	139.9 147.0	25.4 25.5	5.52 5.75
30		5	67.6	11.0	6.05	84.9	13.5	6.18	90.5	15.5	6.19	130.3	21.5	6.07	157.5	26.0	6.06
		7	70.9	11.2	6.31	89.2	13.8	6.46	101.5	15.8	6.44	136.5	21.7	6.28	164.5	26.2	6.27
	\\\ / - 4	10	78.4	11.0	7.10	99.1	14.5	6.82	115.4	16.9	6.84	152.2	23.1	6.59	185.3	27.7	6.69
	Water	15	88.8	11.2	7.93	109.6	14.2	7.73	130.3	16.7	7.82	173.7	23.2	7.48	209.4	28.0	7.47
		-5	50.0	12.3	4.05	64.6	16.4	3.95	73.2	18.6	3.94	99.1	25.3	3.92	119.4	30.1	3.97
		-2	54.7	12.4	4.40	69.7	16.1	4.34	80.2	18.4	4.36	107.7	24.8	4.35	130.5	29.9	4.36
	Brine	0	57.9	12.5	4.63	73.2	15.9	4.60	84.8	18.3	4.63	113.4	24.6	4.62	137.8	29.9	4.61
35		2	61.2	12.6	4.87	77.0	15.9	4.84	89.2	18.4	4.86	119.2	24.7	4.83	144.8	30.0	4.82
		5 7	66.3 69.6	12.6 12.7	5.25 5.50	83.2 87.2	16.1 16.2	5.16 5.39	95.5 99.8	18.5 18.6	5.16 5.37	128.0 133.9	25.2 25.4	5.08 5.26	155.0 161.9	30.5 30.7	5.09 5.28
		10	76.9	12.7	6.07	97.2	16.6	5.87	112.8	19.1	5.91	149.1	26.0	5.73	181.1	31.3	5.79
	Water	15	86.9	12.8	6.81	107.6	16.3	6.60	126.8	18.9	6.72	168.5	26.1	6.45	203.4	31.7	6.41
		-5	48.9	14.0	3.50	63.7	18.4	3.47	72.2	20.9	3.45	96.8	28.4	3.41	117.8	33.6	3.50
		-2	53.5	14.0	3.81	68.8	18.2	3.78	78.9	20.7	3.81	105.6	28.0	3.78	128.1	33.5	3.83
	Brine	0	56.6	14.1	4.02	72.2	18.1	4.00	83.4	20.6	4.05	111.4	27.8	4.01	135.0	33.4	4.04
40	Billio	2	59.8	14.1	4.24	76.0	18.1	4.20	87.7	20.6	4.26	117.3	27.8	4.22	141.9	33.6	4.23
		5	64.8	14.1	4.58	81.9	18.1	4.51	94.1	20.7	4.54	126.1	28.2	4.48	152.2	33.9	4.49
		7 10	68.1 75.0	14.2 14.1	4.81 5.32	85.7 95.3	18.2 18.6	4.72 5.13	98.3 110.1	20.7	4.74 5.17	131.9 146.1	28.3	4.66 5.04	159.0 176.9	34.1	4.67 5.08
	Water	15	84.8	14.2	5.98	105.6	18.4	5.73	123.4	21.1	5.85	163.3	29.0	5.63	197.4	35.4	5.57
		-5	47.5	15.7	3.03	62.5	20.5	3.05	70.6	23.1	3.05	93.7	31.4	2.99	115.9	37.0	3.13
		-2	52.2	15.7	3.33	67.6	20.4	3.30	77.2	23.1	3.35	102.8	31.3	3.28	125.5	37.1	3.38
	Brine	0	55.4	15.7	3.53	71.1	20.4	3.48	81.5	23.0	3.54	108.9	31.3	3.48	132.0	37.2	3.55
45	Dillie	2	58.6	15.7	3.73	74.8	20.4	3.67	85.9	23.0	3.73	114.9	31.2	3.68	138.7	37.3	3.72
10		5	63.3	15.7	4.03	80.5	20.3	3.97	92.5	23.0	4.03	124.0	31.2	3.97	149.1	37.5	3.98
		7	66.5	15.7	4.23	84.3	20.3	4.16	96.8	22.9	4.22	130.0	31.2	4.17	155.9	37.6	4.15
	Water	10 15	73.1 82.7	15.5 15.6	4.72 5.31	93.5 103.6	20.6 20.5	4.54 5.04	107.5 119.9	23.5 23.3	4.57 5.14	143.0 158.1	31.9 31.9	4.48 4.96	172.7 191.3	38.4 39.2	4.50 4.89
		-5	47.1	17.1	2.76	61.8	22.5	2.75	70.3	26.1	2.69	93.5	35.5	2.63	114.2	41.9	2.72
		-2	51.1	17.2	2.98	66.9	22.5	2.97	76.6	25.9	2.96	102.2	35.0	2.92	123.7	41.6	2.97
	Duine	0	53.9	17.2	3.13	70.3	22.6	3.11	80.8	25.8	3.14	107.9	34.8	3.10	130.1	41.5	3.14
50	Brine	2	57.0	17.2	3.32	73.7	22.6	3.26	84.9	25.7	3.30	113.5	34.7	3.27	136.8	41.6	3.29
30		5	62.1	17.1	3.62	78.9	22.6	3.50	91.0	25.7	3.54	121.8	34.8	3.50	146.9	41.8	3.51
		7	65.3	17.1	3.82	82.3	22.5	3.65	95.1	25.7	3.70	127.4	34.9	3.65	153.6	41.9	3.66
	Water	10 15	71.7 80.9	17.2 17.2	4.17	91.6 101.6	22.6 22.7	4.05 4.48	104.8	25.7 25.5	4.08 4.56	140.0 152.9	34.9	4.01 4.39	168.5	42.0 42.9	4.02
		-5	46.5	18.6	4.70 2.50	62.1	24.2	2.56	116.4 70.5	28.3	2.49	92.8	34.8	2.41	185.3 113.7	45.5	4.32 2.50
		-2	49.9	18.7	2.67	66.8	24.2	2.77	76.6	27.7	2.76	101.7	37.4	2.72	122.0	44.4	2.75
	Daire	0	52.5	18.7	2.80	70.0	24.1	2.90	80.6	27.4	2.94	107.4	36.8	2.92	127.8	43.9	2.91
EE	Brine	2	55.5	18.7	2.97	73.2	24.1	3.03	84.4	27.3	3.09	112.8	36.7	3.07	134.2	43.9	3.06
55		5	60.7	18.6	3.27	77.9	24.1	3.24	90.1	27.3	3.30	120.5	37.0	3.26	144.5	44.3	3.26
		7	64.0	18.5	3.46	81.1	24.1	3.37	93.9	27.3	3.44	125.7	37.1	3.39	151.2	44.5	3.40
	Water	10	70.2	18.8	3.73	89.7	24.6	3.64	102.2	27.9	3.66	136.9	37.8	3.62	164.3	45.5	3.61
		15 -5	79.0	18.8	4.21	99.6	24.8	2.19	112.9	27.7	4.07	147.7	37.7	3.92	179.3 109.8	46.6	3.85
		-5 -2	45.0 48.2	20.8 20.9	2.16 2.30	59.6 64.7	27.4 27.8	2.18 2.33	68.1 73.9	32.5 32.1	2.10 2.30	89.6 98.0	44.1 43.5	2.03 2.25	118.4	51.9 51.4	2.12 2.30
		0	50.7	20.9	2.42	68.0	28.0	2.43	77.8	31.9	2.43	103.6	43.2	2.40	124.3	51.4	2.43
	Brine	2	53.7	20.9	2.57	71.0	28.0	2.54	81.6	31.8	2.57	108.9	43.0	2.53	130.6	51.2	2.55
62		5	58.7	20.7	2.84	75.3	27.9	2.70	87.4	31.7	2.76	116.7	42.8	2.72	140.5	51.3	2.74
		7	62.0	20.6	3.01	78.2	27.8	2.81	91.3	31.6	2.88	121.9	42.7	2.85	147.0	51.3	2.86
	Water	10	67.6	20.9	3.24	87.1	27.5	3.17	98.5	31.0	3.18	132.7	42.0	3.16	158.4	50.5	3.14
		15	76.2	20.8	3.66	96.8	27.7	3.49	108.0	30.8	3.50	140.4	41.7	3.37	170.9	51.8	3.30

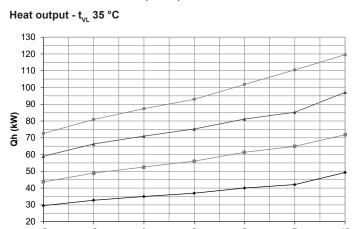
tVL = heating flow temperature (°C)

Take account of daily power cuts! see Engineering

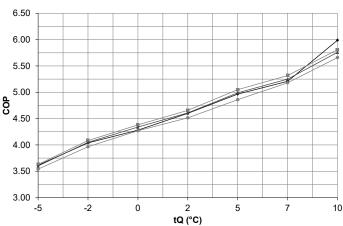
tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

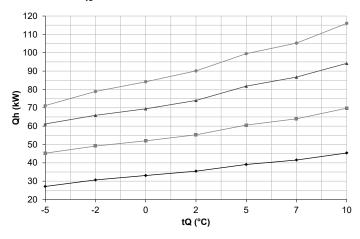
P = power consumption of the overall unit (kW)


COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

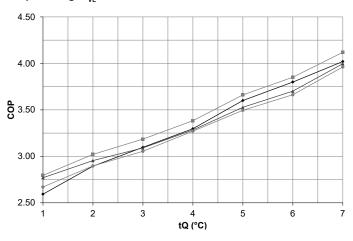
Performance data - heating

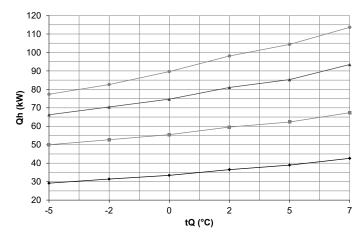

Maximum heat output

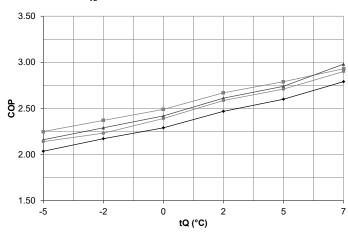
Hoval Thermalia® dual H (35-90) with R134a



tQ (°C)


Output rating - $t_{\rm VL}$ 35 °C


Heat output - $t_{_{VL}}$ 50 °C


Output rating - $t_{_{VL}}$ 50 °C

Heat output - t_{VL} 65 °C

Output rating - $t_{_{VL}}$ 65 °C

tVL = heating flow temperature (°C)

tQ = source temperature (°C)

Qh = heat output at full load (kW), measured in accordance with standard EN 14511

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

← Thermalia® dual H (35)

—■— Thermalia® dual H (50)

Thermalia® dual H (70)

Thermalia® dual H (90)

Performance data - heating

Hoval Thermalia® dual H (35-90)

Indications acc. to EN 14511

Type tVL c tQ Qh P COP Qh kW
°C kW kW<
Brine Brine -2 32.8 8.1 4.04 49.0 12.0 4.08 66.3 16.4 4.05 80.9 20.4 3.97 0 35.0 8.1 4.32 52.5 12.0 4.38 71.0 16.4 4.34 87.4 20.3 4.30 2 37.0 8.0 4.60 56.1 12.0 4.66 75.2 16.3 4.61 92.9 20.6 4.51 5 40.0 8.1 4.97 61.4 12.2 5.05 81.2 16.3 4.99 101.8 20.9 4.86 7 42.1 8.1 5.21 64.9 12.2 5.32 85.2 16.2 5.25 110.5 21.3 5.18 Water 10 49.3 8.2 5.99 71.8 12.4 5.81 97.1 16.9 5.76 119.5 21.1 5.66 -5 28.7 9.0 3.20 44.4 13.2 3.36 60.0 18.0 3.33 71.9 22.4 3.22 -2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 Brine 0 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 40 8rine 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
Brine Brine 0 35.0 8.1 4.32 52.5 12.0 4.38 71.0 16.4 4.34 87.4 20.3 4.30
35 Brine 2 37.0 8.0 4.60 56.1 12.0 4.66 75.2 16.3 4.61 92.9 20.6 4.51 5 40.0 8.1 4.97 61.4 12.2 5.05 81.2 16.3 4.99 101.8 20.9 4.86 7 42.1 8.1 5.21 64.9 12.2 5.32 85.2 16.2 5.25 110.5 21.3 5.18 Water 10 49.3 8.2 5.99 71.8 12.4 5.81 97.1 16.9 5.76 119.5 21.1 5.66 -5 28.7 9.0 3.20 44.4 13.2 3.36 60.0 18.0 3.33 71.9 22.4 3.22 -2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0
35
Water 10 49.3 8.2 5.99 71.8 12.4 5.81 97.1 16.9 5.76 119.5 21.1 5.66 -5 28.7 9.0 3.20 44.4 13.2 3.36 60.0 18.0 3.33 71.9 22.4 3.22 -2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 40 8rine 0 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 40 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
Water 10 49.3 8.2 5.99 71.8 12.4 5.81 97.1 16.9 5.76 119.5 21.1 5.66 -5 28.7 9.0 3.20 44.4 13.2 3.36 60.0 18.0 3.33 71.9 22.4 3.22 -2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 80 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 40 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
-5 28.7 9.0 3.20 44.4 13.2 3.36 60.0 18.0 3.33 71.9 22.4 3.22 -2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 Brine 0 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
-2 32.1 9.1 3.54 49.1 13.2 3.71 66.1 18.0 3.66 80.2 22.4 3.57 0 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 40 5 40.1 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
Brine 0 34.5 9.1 3.78 52.4 13.3 3.95 70.2 18.1 3.88 86.1 22.5 3.82 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
40 Brine 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
40 2 36.7 9.0 4.08 55.8 13.3 4.20 74.6 18.1 4.12 91.7 22.4 4.09 5 40.1 9.0 4.43 61.0 13.5 4.53 81.4 18.5 4.40 100.4 23.3 4.31
7 42.4 9.1 4.66 64.5 13.5 4.77 85.9 18.6 4.61 107.2 23.6 4.54
Water 10 47.5 9.2 5.19 71.2 13.7 5.18 95.8 19.0 5.04 118.1 23.7 4.98
-5 27.8 9.7 2.86 45.1 14.6 3.09 61.0 19.9 3.06 71.4 24.4 2.92
-2 31.5 9.8 3.20 49.7 14.7 3.39 66.0 19.9 3.32 79.5 24.7 3.22
0 339 99 344 528 147 358 697 199 350 850 249 341
45 Brine 2 36.4 9.9 3.66 55.8 14.8 3.77 74.0 20.2 3.66 90.8 25.3 3.59
5 40.1 10.2 3.92 60.3 14.9 4.04 81.2 20.9 3.89 99.6 25.8 3.86
7 42.6 10.3 4.14 63.3 15.0 4.22 85.8 21.2 4.04 105.5 26.1 4.04
Water 10 46.6 10.2 4.58 70.4 15.3 4.61 94.6 21.4 4.43 116.9 26.4 4.42
-5 27.1 10.5 2.59 45.3 16.2 2.80 61.2 22.1 2.77 71.2 26.7 2.67
-2 30.7 10.6 2.89 49.1 16.3 3.02 65.9 22.3 2.95 78.9 27.2 2.90
0 33.1 10.7 3.10 52.0 16.3 3.19 69.5 22.5 3.09 84.2 27.6 3.05
50 Brine 2 35.5 10.8 3.30 55.2 16.3 3.38 74.0 22.5 3.28 90.1 27.5 3.27
5 39.1 10.9 3.60 60.6 16.5 3.66 81.8 23.2 3.53 99.5 28.5 3.50
7 41.5 10.9 3.80 64.0 16.6 3.85 86.7 23.4 3.70 105.3 28.7 3.66
Water 10 45.4 11.3 4.02 69.8 16.9 4.12 94.2 23.6 4.00 116.0 29.3 3.96
-5 26.4 11.5 2.30 45.1 18.0 2.51 61.0 24.5 2.49 71.2 29.1 2.45
-2 29.9 11.7 2.56 48.6 18.0 2.70 65.8 25.0 2.63 78.3 30.0 2.61
Delice 0 32.2 11.8 2.74 51.3 18.1 2.84 69.5 25.3 2.75 83.5 30.5 2.74
55 Brine 2 34.5 11.9 2.91 54.8 18.2 3.02 74.2 25.5 2.92 89.7 30.9 2.91
5 38.1 12.0 3.18 60.8 18.3 3.32 82.2 25.6 3.21 99.9 31.3 3.20
7 40.4 12.1 3.35 64.6 18.4 3.51 87.3 25.7 3.40 106.5 31.5 3.38
Water 10 44.8 12.5 3.58 69.0 18.8 3.68 94.1 25.9 3.63 115.4 32.2 3.58
-5
-2 29.2 14.3 2.04 50.0 22.2 2.25 66.2 30.6 2.16 77.3 36.1 2.14
0 314 145 217 527 222 237 705 308 229 826 370 223
65 Brine 2 33.4 14.6 2.29 55.5 22.3 2.49 74.7 30.9 2.42 89.6 37.5 2.39
5 36.5 14.8 2.47 59.6 22.3 2.67 81.0 31.0 2.61 98.1 37.9 2.59
7 39.0 15.0 2.60 62.3 22.3 2.79 85.3 31.1 2.74 104.4 38.5 2.71
Water 10 42.6 15.3 2.79 67.4 23.0 2.93 93.5 31.4 2.98 113.6 39.2 2.90

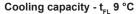
tVL = heating flow temperature (°C)

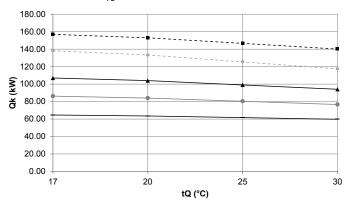
Take account of daily power cuts! see Engineering

tQ = source temperature (°C)

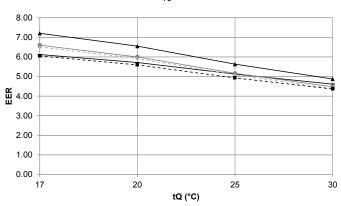
Qh = heat output at full load (kW), measured in accordance with standard EN 14511

P = power consumption of the overall unit (kW)

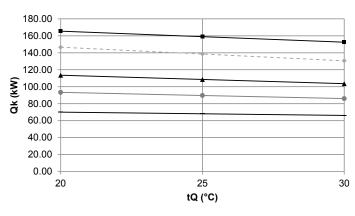

COP = Coefficient of Performance for the overall unit in accordance with standard EN 14511

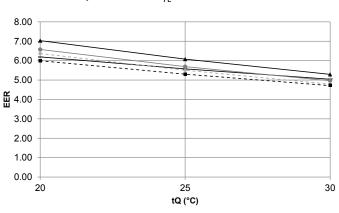


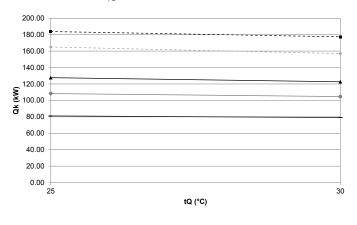
Performance data - cooling

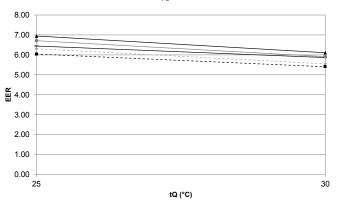

Maximum cooling capacity

Hoval Thermalia® dual R (55-140) with R410A




Coefficient of performance - t_{FL} 9 °C


Cooling capacity - $t_{\rm FL}$ 12 °C


Coefficient of performance - $t_{\rm FL}$ 12 °C

Cooling capacity - t_{FL} 18 °C

Coefficient of performance - $t_{_{\rm FL}}$ 18 °C

tFL = Cooling water flow temperature (°C)

tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511

Thermalia® dual R (55)

Thermalia® dual R (70)

Thermalia® dual R (85)

→- Thermalia® dual R (110)

-- Thermalia® dual R (140)

Performance data - cooling

Hoval Thermalia® dual R (55-140)

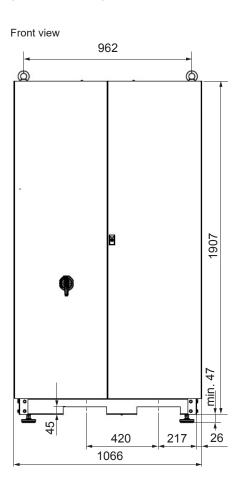
Data according to EN 14511

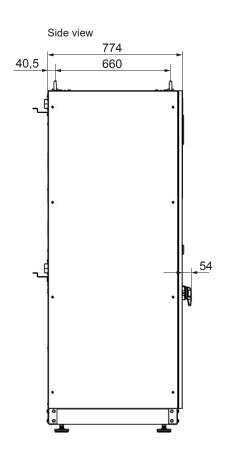
Type	Heat source			R (55)			R (70)			R (85)			R (110)			R (140)	
tFL °C	Medium t1	tQ °C	Qk kW	P kW	EER												
		17	64.66	10.56	6.12	86.20	13.06	6.60	106.97	14.84	7.21	138.10	21.23	6.51	156.90	25.92	6.05
9	Brine	20	63.52	11.11	5.72	84.00	14.00	6.00	103.98	15.87	6.55	133.33	22.51	5.92	153.02	27.35	5.59
9	(Sole)	25	61.62	12.03	5.12	80.34	15.56	5.16	99.00	17.58	5.63	125.37	24.65	5.09	146.56	29.74	4.93
		30	59.72	12.94	4.61	76.67	17.13	4.48	94.02	19.29	4.87	117.42	26.79	4.38	140.09	32.12	4.36
	Brine	20	70.02	11.30	6.20	93.34	14.19	6.58	113.55	16.14	7.04	146.53	23.01	6.37	165.46	27.59	6.00
12	(Sole)	25	68.12	12.21	5.58	89.67	15.76	5.69	108.57	17.85	6.08	138.57	25.15	5.51	158.99	29.97	5.30
	(Sole)	30	66.22	13.13	5.04	86.01	17.32	4.97	103.59	19.56	5.30	130.62	27.29	4.79	152.52	32.36	4.71
15	Brine	25	74.61	12.40	6.02	99.01	15.95	6.21	118.15	18.12	6.52	151.77	25.65	5.92	171.42	30.20	5.68
15	(Sole)	30	72.71	13.31	5.46	95.34	17.52	5.44	113.17	19.83	5.71	143.82	27.79	5.18	164.96	32.59	5.06
18	Brine	25	81.11	12.59	6.44	108.34	16.15	6.71	127.72	18.39	6.95	164.97	26.15	6.31	183.86	30.44	6.04
10	(Sole)	30	79.21	13.50	5.87	104.68	17.71	5.91	122.74	20.10	6.11	157.02	28.29	5.55	177.39	32.82	5.40

tFL = Cooling water flow temperature (°C)

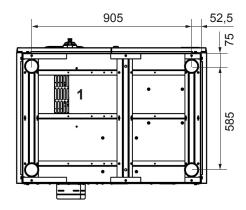
tQ = Source temperature (°C)

Qk = Cooling capacity (kW), measured in accordance with standard EN 14511
P = Power consumption of the overall unit (kW) incl. high-efficiency pump, measured in accordance with EN 14511

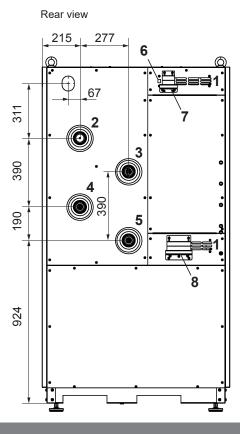

EER = Coefficient of performance for the overall unit in accordance with standard EN 14511


Take account of daily power cuts!

see Engineering

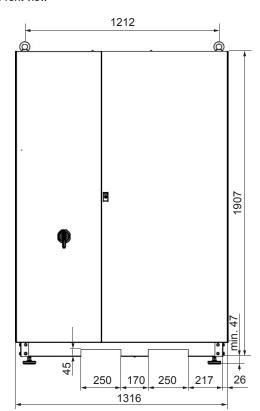


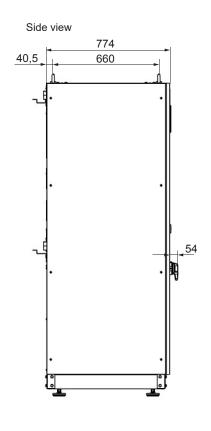
Hoval Thermalia $^{\!0}$ dual (55-85), dual H (35), dual R (55-85) (Dimensions in mm)



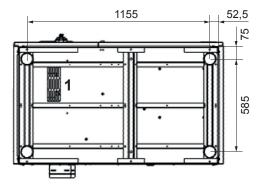
View from below

- 1 Vent opening
- 2 Flow heating or storage tank Rp 2"
- 3 Brine or ground water inlet Rp 2"
- 4 Return heating or storage tank Rp 2"
- 5 Brine or ground water outlet Rp 2"
- 6 LAN interface
- 7 Cable feedthrough for sensors and actuators
- 8 Cable feedthrough for the mains supply and connection to the main circuit


Adjustable feet with M12 thread


Hoval

■ Dimensions


Hoval Thermalia® dual (110-140), dual H (50-90), dual R (110-140) (Dimensions in mm)

Front view

View from below

- 1 Vent opening
- 2 Flow heating or storage tank Thermalia® dual H (50,70) Rp 2"

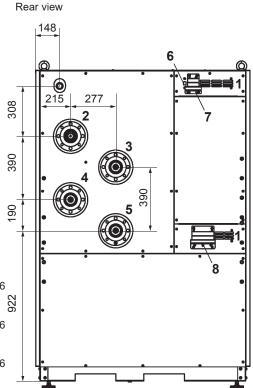
Thermalia® dual, dual R (110,140), dual H (90) flange DN80/PN6

3 Brine or ground water inlet

Thermalia® dual H (50,70) Rp 2"

Thermalia® dual, dual R (110,140), dual H (90) flange DN80/PN6

4 Return heating or storage tank Thermalia® dual H (50,70) Rp 2"


Thermalia® dual, dual R (110,140), dual H (90) flange DN80/PN6

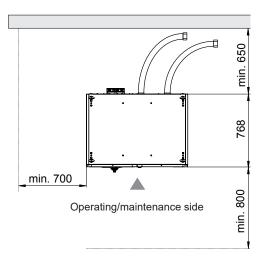
5 Brine or ground water outlet Thermalia® dual H (50,70) Rp 2"

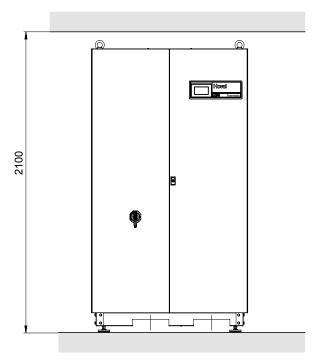
Thermalia® dual, dual R (110,140), dual H (90) flange DN80/PN6

- 6 LAN interface
- 7 Cable feedthrough for sensors and actuators
- 8 Cable feedthrough

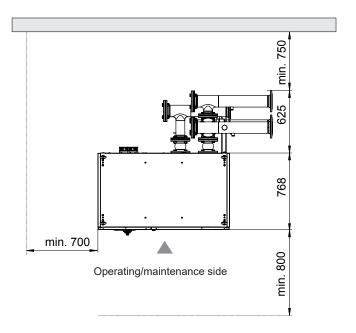
for the mains supply and connection to the main circuit

Adjustable feet with M12 thread



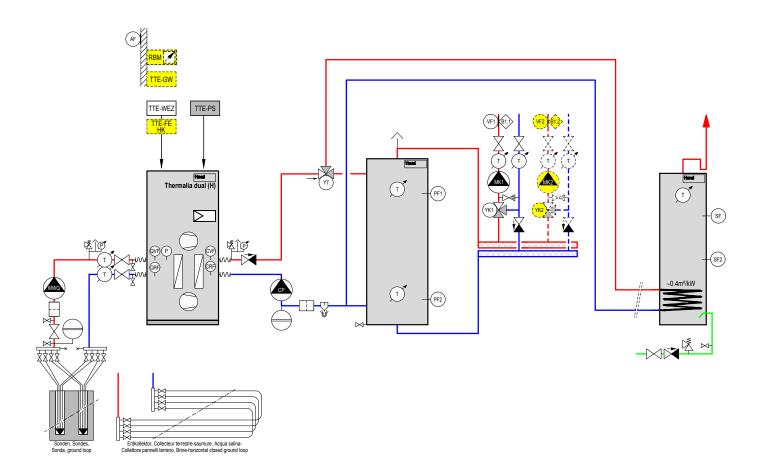

Space requirement

Required wall clearance for operation and maintenance


(Dimensions in mm)

Hoval Thermalia® dual (55-85), dual H (35-70), dual R (55-85)

Hoval Thermalia® dual (110-140), dual H (90), dual R (110-140)


■ Examples

Thermalia® dual

Brine/water-water/water heat pump with

- energy buffer storage tank
- calorifier
- 1-... mixer circuit(s)

Hydraulic schematics BBBDE020

Important notices

- The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on-site, dimensioning and local regulations.
- With underfloor heating a flow temperature monitor must be built in.
- Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing!
- Install sacks to prevent single-pipe gravity circulation!

TTF-WF7	TonTronic® E basic module heat generator (insta	المطال

TTE-PS TopTronic® E buffer module Flow temperature sensor 1 VF1

B1.1

Flow temperature guard (if required)
Pump mixer circuit 1 MK1 YK1 Actuator mixer 1 AF SF Outdoor sensor Calorifier sensor SF2 Calorifier sensor 2

PF1 Buffer sensor 1 PF2 Buffer sensor 2 Υ7 Switching valve CP Condenser pump

Delivery pump in heat source intermediate circuit MWQ

(cold-water design)

Option

RBM TopTronic® E room control module

TTE-GW TopTronic® E Gateway

TTE-FE HK TopTronic® E module expansion heating circuit

VF2 Flow temperature sensor 2

B1.2 Flow temperature guard (if required)

MK2 Pump mixer circuit 2 YK2 Actuator mixer 2

Description

Fan convectors FWT-CT

- · Fan convector for heating and cooling
- Spreads warmth or cold if installed in a heating system with heat pump
- Sound power level min. - max. = 36-59 dB(A)
- · Colour: white
- Dimensions
 - FWT-CT (2-4): 288 x 800 x 206 (H x W x D)
 - FWT-CT (5,6): 310 x 1065 x 224 (H x W x D)
- Weight
 - FWT-CT (2-4): 9 kg
 - FWT-CT (5,6): 14 kg
- Insulated with self-extinguishing thermal insulation class 1
- Remote control up to 9 m possible (option)
- Exchangeable and washable air filter (self-extinguishing, class 1)
- 3-stage fan

FWT-CT (2-6)

Part No.

_				_
Fan	conv	vectors	FWT-C	Г

Type	Heat output	Cooling	Flow rate	
	t-FL 50 °C	capacity		
	W	t-FL 7 °C	l/h	
		W		
FWT-CT (2)	2900	2290	420	
FWT-CT (3)	3140	2460	460	
FWT-CT (4)	3960	3080	570	
FWT-CT (5)	5420	4250	780	
FWT-CT (6)	6450	4690	910	

■ Part No.

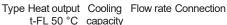
Fan convectors FWT-CT

for Belaria® SRM, compact SRM (4-16) and hybrid SRM

Fan convector for heating and cooling for wall installation. Spreads warmth or cold if installed in a heating system with heat pump.

Sound power level min. - max. = 36-59 dB(A)

Colour: white Dimensions


FWT-CT (2-4): 288 x 800 x 206 (H x W x D) FWT-CT (5,6):310 x 1065 x 224 (H x W x D)

Weight

FWT-CT (2-4): 9 kg FWT-CT (5,6): 14 kg

The minimum flow rate of the Belaria® SRM, compact SRM, hybrid SRM must be observed during the process of dimensioning.

Remote control FWT-CT must be ordered separately.

	W	t-FL 7 °C W	l/h	DN	
(2)	2900	2290	420	20	6040 205
(3)	3140	2460	460	20	6040 206
(4)	3960	3080	570	25	6040 207
(5) (6)	5420 6450	4250 4690	780 910	25 25	6040 208 6040 209

Remote control - FWT-CT

for Fan Coil FWT-CT (2-6) with radio transmission Operating mode selection Display of operating states Configurable day program Temperature setting

6040 359

Switching ball valve VBG60.. DN 15-50, PN 16, 120 °C

- Three-way ball valve made of brass with threaded connection
- · incl. seals and screw connections

DN	Conn Valve	ection Fitting	kvs	\dot{V} [m³/h] at ΔP 50 mbar	
20	G 11/4"	Rp ¾"	13	2.91	6045 768
25	G 11/2"	Rp 1"	13	2.91	6045 769

Suitable motor drive

Type Voltage Control Actuasignal tor run time

GLB341.9E 230 V / 50/60 Hz 2-/3-point 150 s

2070 331

In-wall installation box - fan convector

for fan convectors FWT-CT (2-6) for simplified piping installation Pipe inlet on top or on side Condensate connection available on bottom left or right Outside diameter 16 mm Consisting of: in-wall installation box and cover panel Cardboard cover to protect against dirt build-up during installation 4 fixing screws Material: plastic Colour: white Dimensions: 85 x 520 x 65 (H x W x D)

2067 872

Overflow valves

see chapter "Belaria® SRM, compact SRM"

Fan convectors FWT-CT

Туре				FWT-CT (2)	FWT-CT (3)	FWT-CT (4)	FWT-CT (5)	FWT-CT (6)
Heat output	t-FL 50 °C		W	2900	3140	3960	5420	6450
Cooling capacity	t-FL 7 °C		W	2290	2460	3080	4250	4690
Dimensions	Unit	Height	mm	288	288	288	310	310
		Width	mm	800	800	800	1065	1065
		Depth	mm	206	206	206	224	224
Weight	Unit		kg	9.0	9.0	9.0	14	14
	Operationa	al weight	kg	9.6	9.6	9.6	15	15
Water flow	Cooling		l/h	420	460	570	780	910
	Heating		l/h	420	460	570	780	910
Pressure drop on water side	Cooling		kPa	34	24	31	28	32
	Heating		kPa	29	20	25	25	29
Sound power level	Stage high		dB (A)	45	48	55	55	59
	Stage medium		dB (A)	41	44	50	51	54
	Stage low		dB (A)	36	39	45	47	51
Sound pressure level	Stage high	1	dB (A)	34	35	42	42	46
	Stage med	lium	dB (A)	29	30	39	38	42
	Stage low		dB (A)	25	25	32	34	39
Water connections	Heat excha	anger	Inches			1/2		
Electrical data								
Current consumption	Stage high	l	Α	0.19	0.20	0.21	0.29	0.34
	Stage med	lium	Α	0.18	0.20	0.20	0.26	0.32
	Stage low		Α	0.17	0.19	0.19	0.25	0.31
Power consumption	Stage high		W	31	32	42	53	72
	Stage med	lium	W	29	31	37	47	68
	Stage low		W	25	29	33	42	60

Sound data

Туре	Speed of		1/1 octave sound power level [dB(A), ref. 20 μPa]							
	rotation	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz		
FWT-CT (2)	High	31	32	33	28	28	14	6	34	
	Medium	25	29	28	24	19	9	5	29	
	Low	20	28	24	20	11	8	6	25	
FWT-CT (3)	High	30	33	33	32	28	17	8	35	
	Medium	26	29	30	27	21	11	7	30	
	Low	19	25	25	21	14	6	6	25	
FWT-CT (4)	High	41	39	39	38	36	26	14	42	
	Medium	38	36	37	34	32	22	10	39	
	Low	30	30	31	28	23	12	7	32	
FWT-CT (5)	High	37	38	38	39	33	22	11	42	
	Medium	33	35	35	35	29	17	8	38	
	Low	29	33	32	31	23	12	7	34	
FWT-CT (6)	High	42	42	42	42	40	31	21	43	
	Medium	37	38	39	38	34	24	13	42	
	Low	34	35	36	35	30	20	9	39	

Operating range

Thermal carrier: Water Water temperature: 4-50 °C

Maximum permitted

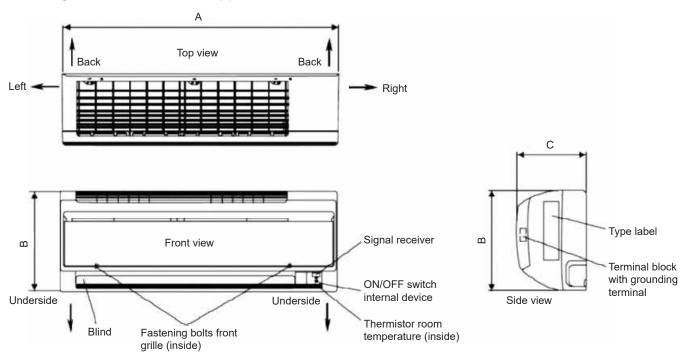
water-side pressure: 16 bar Air temperature: as below

Heating

TemperatureTs [°C]Th [°C]Min. indoor temperature15-Max. indoor temperature27-

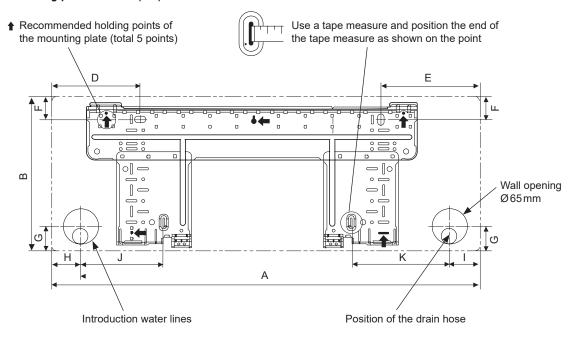
Cooling

TemperatureTs [°C]Th [°C]Min. indoor temperature1914Max. indoor temperature3223

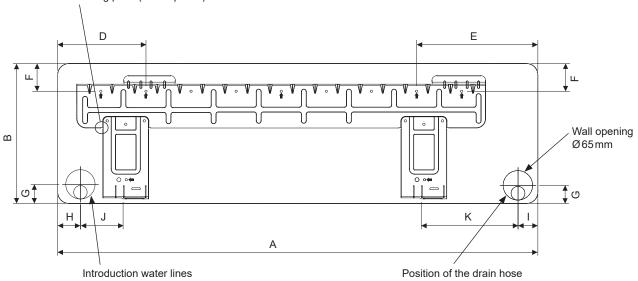

Ts = Dry temperature

Th = Cooling limit temperature

Fan convectors FWT-CT

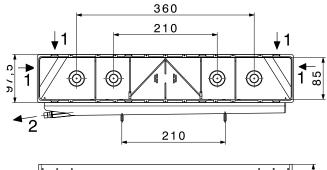

(Dimensions in mm)

The marking \rightarrow indicates the direction of the pipe


Туре	Α	В	С
FWT-CT (2-4)	800	288	206
FWT-CT (5.6)	1065	310	224

Mounting plate FWT-CT (2-4)

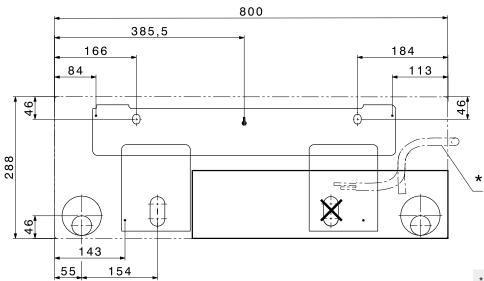
Mounting plate FWT-CT (5,6)


↑ Recommended holding points of the mounting plate (total 7 points)

Туре		Α	В	С	D	Е	F	G	Н	1	J	K
FWT-CT (2-4)	mm	800	288	206	166	184	42	46	55	56	154	182
FWT-CT (5.6)	mm	1065	310	224	190	173	61	40	45	48	91	219

In-wall installation box

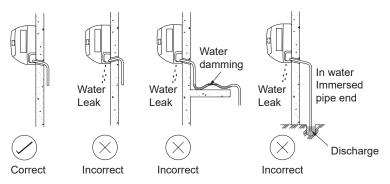
(Dimensions in mm)


520

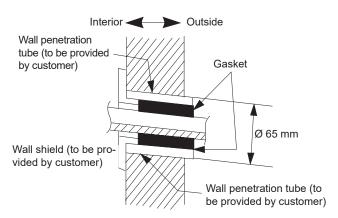
- 68 Hydraulic and electrical connection
 - Condensate drain DN 15 (optionally left or right)

Wall opening (Dimensions in mm) 540 75

Fan convectors FWT-CT (2-4) incl. mounting plate and in-wall installation box (Dimensions in mm)



* Install possible connection variants on site if necessary.


■ Engineering

Condensate drain

The interior **condensate drain** must slope downwards for draining away condensate without problems. Avoid circumstances which could cause water to emerge.

Hole made by tapered bit

Selection table

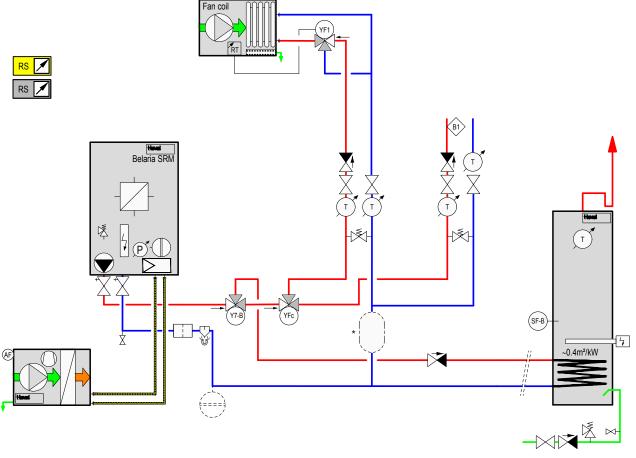
for Belaria® SRM, compact SRM, hybrid SRM

To ensure correct function of the Belaria® SRM, fan convectors are only allowed to be selected according to the table below. If a fan convector is used which has a lower cooling capacity than that of the heat pump, the volume of the intermediate tank must be at least 200 litres.

			F	WT-C	Т	
		(2)	(3)	(4)	(5)	(6)
	Cooling capacity A35/W7 *	2.29	2.46	3.08	4.25	4.69
Belaria® SRM (4)	1.35	•	•	•	•	•
Belaria® SRM (6)	1.65	•	•	•	•	•
Belaria® SRM (8) / hybrid SRM (8/32)	1.92	•	•	•	•	•
Belaria® SRM (11)	3.51				•	•
Belaria® SRM (14)	3.78				•	•
Belaria® SRM (16)	3.93				•	•

^{* 30 %} modulated

■ Example


Hoval Belaria® SRM

Air/water heat pump with

- calorifiers
- Cooling fan convector (fan coil)
- 1 direct circuit

Hydraulic schematic BBAAE020

Sample applications with several blower convectors on request.

* Additional volume for defrosting procedure

Important notices

The example schematics merely show the basic principle and do not contain all information required for installation. Installation must be carried out according to the conditions on site, dimensioning and local regulations.

With underfloor heating, a flow temperature monitor must be installed. Shut-off devices to the safety equipment (pressure expansion tank, safety valve, etc.) must be secured against unintentional closing! Install pockets to prevent single-pipe gravity circulation!

Flow temperature guard (if required)

Outdoor sensor AF YF1 Actuator Fan Coil

Switching valve (Belaria® SRM)
Switching valve (fan coil) Y7-B YFc

SF-B Hot water sensor

Option BR Burner connection

RT External room/moisture thermostat

CAUTION

There must be an overflow valve in the cooling circuit!

■ Engineering

General

Requirements and directives

The following requirements and directives must be complied with:

- Technical information and installation instructions from Hoval
- Hydraulic regulations and those pertaining to instrumentation and control
- · Building regulations
- · Fire protection regulations
- Regulations of the local power station
- VDI 4640: Thermal use of the underground
- DIN EN 1736: Refrigerating systems and heat pumps
- DIN EN 378: Refrigerating systems and heat pumps - Safety and environmental requirements
- DIN EN 13313: Refrigerating systems and heat pumps - Competence of personnel
- VDI Directive 2035: Protection against corrosion and boiler scale in heating and domestic hot water systems.
- Country-specific and regional regulations and laws, in particular
- EN 12828: Heating systems in buildings -Design of hot water heating systems
- EN 12831: Heating systems in buildings -Method for calculation of the design heat load
- EN 15450: Heating systems in buildings -Design of heat pump heating systems

Switzerland:

Environment

- Chemical risk reduction ordinance (CRRV), Appendix 2.10 ff
- Instructions for using heat from water and ground (Buwal)
- Instructions for using heat with closed geothermal probes (Buwal)
- · Noise abatement regulations (LSV)
- SN 253 120 (refrigerant definitions)
- · Cantonal and local regulations

Electrical connection

- VSE recommendations for connecting heat pump systems for heating and domestic water heating to the network of electricity companies (2.29d, September 1983)
- · Regulations of the local power station
- Do not attach any rigid connections
 (e.g. cable duct) to the heat pump housing

Planning and design

- Cantonal and local fire prevention authority regulations as well as state-specific regulations
- SWKI directive 92-1 hydraulic circuit of heat pump heating systems
- FWS and GKS regulations and codes of practice
- SWKI 93-1 guidelines "Safety engineering installations for heating systems"
- Bivalent plants: special engineering guidelines for the corresponding supplementary heat generator must be observed
- SIA 384/6 Geothermal probes

Austria:

Environment

- ÖWAV code of practice 207: Thermal use of underground water and the underground – heating and cooling
- ÖNORM S 5021: Basic acoustical principles for town, regional and physical planning
- ÖAL Directive no. 3: Assessment of noise imissions in the neighbouring area

Electrical connection

 Country-specific and regional regulations and laws, in particular ÖVE directives

Planning and design

- OIB Directive no. 4: Safety in use and barrier-free access
- ÖNORM B3417: Safety equipment for roofs
- ÖNORM H 5151-1: Design of hot water central heating systems with or without water heating
- ÖNORM H 5195-1 and -2: Heat transfer media for building services systems
- ÖNORM M 7755: Heat pump heating systems

Germany:

Environment

- DIN 8901: Refrigerating systems and heat pumps - Protection of soil, ground and surface water
- TA-Lärm: Requirements on the installation location

Electrical connection

- VDE directives
- Technical connection condition (TAB 2007) for connecting to the low voltage grid
- DIN 8947: Heat pumps; heat pump units with electric driven compressors for heating of water

Planning and design

- Energy Conservation Ordinance (EnEV)
- Renewable Energies Heating Law (EEWärmeG)
- Drinking Water Ordinance (TrinkwV)
- DVGW worksheets W 551 and W 553
- DIN EN 15450: Heating systems in buildings
 Design of heat pump heating systems

Energy buffer storage tank

An energy buffer storage tank ensures optimal operating conditions for the heat pump.

- Hydraulic decoupling of the various volumetric flows from the heat pump and heat distribution system (heating)
- Absorbs the power reserves of the heat pump and reduces the switch-on frequency (cycling)
- Allows several heating circuits to be connected Hoval Belaria® twin air/water heat pumps and Thermalia® twin and Thermalia® dual brine/ water heat pumps require an energy buffer storage tank.

An energy buffer storage tank can be dispensed with if the following pre-conditions are met:

Switzerland and Austria:

If there is a direct circuit of panel heating with storage capacity and a constant flow rate (2/3 must be incapable of being shut off; exception: Hoval Belaria® twin I, twin IR, twin A, twin AR).

Germany:

- Underfloor heating with storage capability and constant flow rate at all times through the heating system and heat pump
- The system volume must be at least 15 litres water content per kW heat output of the heat pump at the standard point W10W35, B0W35 or A2/W35

 A bypass with relief valve must be installed to ensure the minimum flow rate is achieved.
 The minimum water content of 15 litres/kW heat output is required between heat pump and bypass.

The energy buffer storage tank has the following dimensions:

$$V_{SP} \ge \frac{220 \cdot \dot{Q}_{HP}}{\Delta t \cdot n} \quad [dm^3]$$

V_{SP} Volume of the energy buffer storage tank [dm³]

Q_{HP} Max. heat output of the heat pump [kW] In 2-stage machines, the output of stage 1 should be used in the calculation

- ∆t Temperature difference between the on/off command
- n Switching frequency per hour (maximum 3)

Energy buffer storage tank for optimising running time:

If the minimum volume cannot be met by panel heating, a minimum volume of 20 l/kW is to be recommended for the design of the energy buffer storage tank.

The energy buffer storage tank must be made correspondingly larger in order to bridge periods when the electricity is switched off by the energy company, in particular in the case of radiator heating systems.

Set-up

The Hoval Thermalia® and Belaria® heat pumps can be mounted without a base in the boiler room.

- The installation location must be selected in accordance with the valid requirements and directives. Rooms with high air humidity, for example laundry rooms, etc. are not suitable installation locations (dewpoint <10 °C).
- The installation location must be free from dust or other foreign matter which could lead to contamination
- Access for the purpose of operation and maintenance must be ensured
- Penetrations and openings in the masonry must be created proficiently (cold bridges, etc. on the outside wall must be avoided at all costs)
- Concrete shafts and light wells by means of which the air is drawn in or blown out must be provided with drainage
- If the ambient temperature of the heat pump is less than 10 °C, it must be equipped with a crankcase heater for each compressor. This applies to heat pumps whether they are set up indoors or outdoors.

Noise emissions

The effective sound pressure in the installation room depends on various factors such as room size, absorption capacity, reflection, free sound propagation, etc. For this reason, it is important to ensure that where possible, the boiler room is outside noise-sensitive areas of the building and equipped with a sound-absorbing door. If air/water heat pumps are set up indoors, the intake and exhaust air openings or the installation location must be selected so that the noise emissions are not perceived as a disruptive.

Engineering

General

The openings in the masonry for intake and exhaust air or the installation location must be made in the less frequented area of the building (not below or adjacent to living rooms and bedrooms).

Air ducts made of concrete have unfavourable acoustic properties and often magnify noise emissions. It is therefore advisable to equip the air ducts with a sound-absorbing, weatherproof lining or with sound attenuation splitters. When air/water heat pumps are set up outdoors, optimum planning of the installation location is particularly important, since the noise not only affects the building in question but also often adjacent buildings or properties. The installation location must be selected so that there are no living rooms and bedrooms in the noise imission area. In many cases, selecting the set-up location on the "noisy side" facing the road or street has proven to be ideal. When it comes to noise emissions, local conditions and individual noise sensitivity play a significant role, which means it is recommended for a specialist (acoustic engineer) to be consulted with regard to finding a solution. No rigid connections (e.g. cable ducts) are allowed to be attached to heat pumps, in order to avoid solid-borne noise.

Design of the heat source

An earthbound heat source (flat collector, depth probe) must be designed for the total energy requirement. The total energy requirement is the sum of the energy requirements for room heating, water heating and, where applicable, special applications. The heat source is not designed for the heat pump!

Off-periods by power companies

If the power supply for the heat pump is temporarily shut down by the power company (for example due to special tariffs), this has to be taken into account in the design of the heat pump.

The daily heat quantity must then be produced when electricity is available. The heat pump must be designed for the maximum off-period in accordance with the energy supply contract. With radiator heating systems, the loss of radiant heat if the electricity is switched off by the energy company is seen as a nuisance, even though the room temperature may not in fact drop significantly. This must be taken into consideration in the design process. A larger energy buffer storage tank can only bring a limited improvement as with a heat pump, the temperature elevation is kept to a minimum for a better COP.

Example:

Calculated heat demand without off-periods: 10 kW (in 24 hours)
Off-period: 2 x 2 hours = 4 hours
Electricity available: 20 hours

 $\frac{10 \text{ kW} \cdot 24\text{h}}{20 \text{ hours}} = 12 \text{ kW}$

This results in a surcharge of 20 %.

Surcharges for typical off-periods:

Off-period	Surcharge
1 x 1 hour	5 %
1 x 2 hours	10 %
2 x 2 hours	20 %
3 x 2 hours	33 %

Hot water supply

If the domestic hot water is heated using the heating heat pump, this must be taken into account when designing the heat pump.

One and two-family home

0.25 kW per person needs to be added to the heat output. This corresponds to a domestic hot water requirement of about 50 litres at 45 °C per day.

Germany:

Multi-family home:

In the multi-family home, the design is carried out according to DIN EN 15450 taking account of the hygiene requirements as stated in the Drinking Water Ordinance as well as DVGW worksheets W 551 and W 553. Accordingly, it is first necessary to calculate the maximum domestic hot water requirement and the consumption behaviour. As a rule of thumb, a daily average domestic hot water requirement of 1.45 kWh per person can be assumed. At a storage temperature of 60 °C, this corresponds to a water quantity of 25 l per person. In the case of increased domestic hot water re-

in the case of increased domestic not water requirement (large tubs, monsoon showers, etc.) the required bulk output and the daily domestic hot water requirement must be calculated and taken into consideration when dimensioning the heat pump or heat source.

Ideally, calorifiers with large inlying plain tube heat exchangers (CombiVal ESR and ESSR) are used.

The maximum heat output of the heat pump is decisive for setting the size of the heat exchanger surface area:

- Heat exchanger surface area = 0.3-0.4 m²
 per kW max. heat pump heat output during
 the operating time of the system
 (air/water heat pumps with A20/W55)
- In 2-stage heat pumps, the output of the first stage can be used

Power requirement for special applications

If the heat pump is also used, for example, to heat swimming pools, it is important to take the greatly increased energy requirement into consideration in the design phase.

In the case of an outdoor swimming pool which is only heated outside the heating season, the increased annual runtimes mean that the heat source needs to be correspondingly enlarged (only for geothermal heat).

If an indoor swimming pool is heated all year round, the required output for room heating and heating of the water in the pool must be added to the total output, in addition to the increased runtime.

Installation

The system must be filled in accordance with the applicable standards.

Where copper is used as an installation material, damage to the rubber tubes used with heat pumps to reduce the structure-borne sound level may occur. As an alternative, corrugated stainless steel tubing can be used (on site). However, such pipes bring less reduction of structure-borne sound.

An air separator must be installed in the flow pipe. A sludge separator must be installed in the return pipe to the heat pump.

Baking out

The baking out of buildings and floors must not be done with brine/water heat pumps (heat source linked to earth). If this instruction is not observed, the additional load can lead to irreparable damage to the heat source. Alternative heat sources should thus be used for the baking out.

This is generally done by installing an electric water heater.

However, mobile heaters running on electricity, oil or gas can also be used.

Operating modes

Monovalent:

As a stand-alone heat generator, the heat pump covers all heat demands at all times. For the monovalent operating mode, ensure that the maximum achievable flow temperature of the heat pump is greater than the maximum required flow temperature of the heating. Example of new systems:

Brine/water or water/water heat pumps.

Bivalent parallel and single energy source: The heat pump alone heats until the switch-on point (bivalent point) is reached. An additional heater then heats the water in parallel to this. If this additional heater is an electric water heater, then the operating mode is monoenergetic. For a bivalent parallel operating mode, ensure that the maximum achievable flow temperature of the heat pump is greater than the maximum required flow temperature of the heater. Example: New installation of air/water heat pumps and retrofitting during refurbishment of an old building.

Bivalent alternative:

The heat pump alone heats until the switching point (bivalent point) is reached. An additional heat generator then heats the water alone. For the alternative bivalent operating mode, ensure that the maximum achievable flow temperature of the heat pump is greater than the maximum flow temperature of the heater. Higher temperatures are thereafter possible with the additional heat generator.

Example: Retrofitting during refurbishment of an old building

Bivalent semi-parallel:

The heat pump alone heats until the switch-on point (bivalent point) is reached. An additional heater then heats in parallel to this until the switch-off point of the heat pump. The heat pump can be switched off in this case either based on efficiency or energy cost criteria, taking account of the necessary flow temperature.

General

Performance data

The standard points for specifying the relevant values are clearly defined. The following conditions apply to heat pump systems:

Air/water A2W35 Brine/water B0W35 Water/water W10/W35

Heat source:

- A2 = Air inlet temperature 2 °C
- B0 = Brine inlet temperature 0 °C
- W10 = Water inlet temperature 10 °C

Heat utilisation (heating):

• W35 = Water outlet temperature 35 °C

Electrical data

The grid operators require the following information in order to grant approval:

Imax (A) Max. current consumption of the compressor. Used for setting the dimensions of the feeder cable and fusing.

Blocking current referred to as LRA (A)

 Current consumption on direct starting. Used for assessing the system perturbation (voltage dip)

Starting current (A)

 Current consumption on direct starting with external starting

current limiter

cos ф

 Power factor; used for setting the dimensions of any power factor correction This information specific to heat pumps is listed for the specific products in the Hoval catalogue and on the heat pump rating plate.

The required clarifications and the approval request must be made during the planning phase of the system. The approval of the responsible grid operator must have already been obtained when the heat pump is ordered!

If the inrush current exceeds the maximum values defined by the grid operator, a frequency converter must be supplied or installed by the client.

For brine/water heat pumps with flow temperatures higher than 60 °C and all air/water heat pumps

Maximum filling quantity without/with demineralisation

		Tota	I hardne	ss of the	filling w	ater up to)	
[mol/m ³] ¹	<0.1	0.5	1	1.5	2	2.5	3	>3.0
f°H	<1	5	10	15	20	25	30	>30
d°H	<0.56	2.8	5.6	8.4	11.2	14.0	16.8	>16.8
e°H	<0.71	3.6	7.1	10.7	14.2	17.8	21.3	>21.3
~mg/l	<10	50.0	100.0	150.0	200.0	250.0	300.0	>300
Conductance ²	<20	100.0	200.0	300.0	400.0	500.0	600.0	>600
Output of the individual heat generator		Maximu	m filling	quantity	without o	deminera	lisation	
up to 50 kW	N	0	50 l/kW	50 l/kW	20 l/kW	20 l/kW	20 l/kW	
50 to 200 kW	REQUIF	REMENT	50 l/kW	20 l/kW	20 l/kW	Alway	s demine	ralise

¹ Total alkaline earths

Water quality Heating water:

- The requirements of European standard EN 14868 and VDI 2035 or SIA 384/1:2009 must be met.
- Hoval heat generators are suitable for heating systems without significant oxygen intake (system type I in accordance with EN 14868).
- · Systems with
 - continuous oxygen intake (e.g. underfloor heating systems without diffusion-proof plastic piping) or
 - intermittent oxygen intake (e.g. requiring frequent topping-up) must be equipped with a system separation.
- Treated heating water must be tested at least 1x per year, or more frequently if specified by the manufacturer of the inhibitor.
- In the case of existing systems (e.g. replacing the heat generator), if the water quality of the existing heating water meets the requirements of VDI 2035, re-filling the system is not recommended. The requirements of VDI 2035 also apply to replacement water.
- Before filling new systems and, where necessary, existing systems, the heating system must be professionally cleaned and flushed!
 The heat generator must not be filled until the heating system has been flushed.
- Parts of the heat generator/calorifier which come into contact with water are made of copper and stainless steel.
- Due to the danger of stress cracking corrosion to the stainless steel part and pitting in the copper part of the heat generator, the chloride, nitrate and sulphate content in the heating water must not exceed 100 mg/l in total.
- The pH value of the heating water should be between 8.3 and 9.0 after 6 - 12 weeks of heating operation to avoid obstruction of the flow as a result of deposits of corrosion products from other heating system materials.

² If the conductance in μS/cm exceeds the value in the table, a water analysis will be required.

Engineering General

Filling and replacement water:

- As a rule, the best filling and replacement water for a system with Hoval heat generator is untreated mains water. However, the quality of the untreated mains water must still meet the requirements of VDI 2035 or be demineralised and/or treated with inhibitors. The requirements of EN 14868 must be met in this context.
- To maintain the high efficiency of the heat generator, the water content of the system and the maximum flow temperature should not exceed the values in the tables, based on the output of the heat generator (smallest heat generator for systems with more than one heat generator)
- The total quantity of filling and replacement water added to the heat generator over its service life must not be higher than three times the system water content

Engineering checklist for heat pump systems

Hoval Belaria® SRM, compact SRM, SHM air/water heat pump (split design)

- Installation location of outdoor unit/position: air outlet and intake must be clear
- No parts and plants at risk of frost damage are allowed to be on the blow-out side
- The necessary clearance (see "dimensions/space required") and accessibility must be assured
- Noise development requires minimum distances from sensitive rooms in adjacent buildings. These must be adhered to (TA-Lärm).
- There must be a condensate drain from the outdoor unit
- The indoor unit must be positioned so the necessary clearances are complied with
- Pipes (refrigerant) must be routed in accordance with the specifications in the installation instructions
- Direct connection to the heating network only by differential pressure bypass valve (minimum flow rate) and intermediate tank (minimum water volume)
- Definition of hydraulic diagram according to Hoval standard for heating and possibly hot water
- Dimensions of heat pump type selected according to Qh, flow temperature and operating method. (Table/heat output curves/ bivalence point)
- · Poss. selection of type with cooling function
- Cooling with fan coils (important: condensate drain with fan coils)
- Clarification of electrical supply with energy supply company (conditions/off-periods/connected load)
- Clarification of subsidy amounts and ancillary conditions

Hoval Thermalia® brine/water heat pump

- · Clarification of geothermal probe holes
- Installation location (not under bedroom)
- Geothermal probe calculation (domestic hot water supplement/number of probes/ pressure drop calculation; aim for minimum current consumption of brine pump)
- Definition of hydraulic diagram according to Hoval standard for heating and possibly hot water (combination with solar, possible cascade connection according to Hoval system technology)
- Passive cooling according to configuration based on Hoval system technology.
- Dimensions of heat pump type selected according to Qh, flow temperature and operating method. (Table/heat output curves/ bivalence point)
- Possible configuration of calorifier with corresponding size and required heat register size according to table
- Clarification of electrical supply with energy supply company (conditions/off-periods/connected load)
- Clarification of subsidy amounts and ancillary conditions

Hoval Belaria® twin I, twin IR and Belaria® twin A, twin AR air/water heat pump

- Installation location (indoor or outdoor installation). Air outlet and intake must be clear.
 Comply with notices on air guidance.
- No parts and plants at risk of frost damage are allowed to be on the blow-out side
- The necessary clearance (see "dimensions/space required") and accessibility must be assured
- · Noise development (not under bedrooms)
- Noise development requires minimum distances from sensitive rooms in adjacent buildings. These must be adhered to (TA-Lärm).
 Provide attenuation measures if required.
- · There must be a condensate drain
- Definition of hydraulic diagram according to Hoval standard for heating and possibly hot water preheating (combination with solar)
- Definition of heat pump type according to Qh and flow temperature (table)
- · Define size of buffer storage tank
- Possibilities for transporting in (Belaria[®] twin I, twin IR)
- Dimensions of heat pump type selected according to Qh, flow temperature and operating method (tables/heat output curves/ bivalence point)
- Possible configuration of calorifier with corresponding size and required heat register size (important: configure with A20W55)
- Positioning and integration of technical storage tank
- Clarification of electrical supply with energy supply company (conditions/off-periods/connected load)
- Clarification of subsidy amounts and ancillary conditions

Hoval Thermalia® ground source heat pump

- · Clarification of ground water approval
- · Geological water inspection report
- Ground water temperatures summer + winter/quantity in l/min or m³/h.
- · Installation location (not under bedroom)
- Definition of hydraulic diagram according to Hoval standard for heating and possibly hot water
- Connection of ground water only via separating heat exchanger (intermediate carrier circuit). Separating heat exchanger is configured according to the heat pump type (table).
- Dimensions of heat pump type selected according to Qh, flow temperature and operating method. (Heat output table. Important: intermediate carrier circuit: read out heat output and flow temperature at brine/water +7 °C.)
- Design of ground source heat pump and possible intermediate circuit pump according to nominal flow rates and pressure drops
- Passive cooling according to configuration based on Hoval system technology
- Possible configuration of calorifier with corresponding size and required heat register size according to table
- Clarification of electrical supply with energy supply company (conditions/off-periods/connected load)
- Clarification of subsidy amounts and ancillary conditions

General

Clarify which installation location and which system concept are provided, and contact Hoval in case anything is unclear.

Checks before installation

The following checks are required before installation:

- Consult the installation, operating and maintenance instructions of the Hoval Thermalia® and Belaria® heat pumps
- Access for the purpose of operation and maintenance
- Dimensions and position of the masonry openings
- Position of the heating and condensate drain connections
- · Position of the condensate drain in the room
- Drainage of the area ducts or set-up area for the Belaria® and acoustic insulation of the air ducts
- Installation of Belaria® outdoor unit

Hydraulics

- Check the hydraulic piping of the system according to be selected schematic diagram
- · Clarify any open issues before installation
- The electrical diagram does not serve as a hydraulic diagram, but merely for positioning of sensors, valves, pumps and thermostats, etc.
- Fittings and instruments must be installed according to the corresponding engineering documents

Electrical installation

- The electrical connection cables to the heat pump must be installed in a flexible way
- The information on the plant diagram must be complied with
- Quality and routing regulations for the sensor cables must be complied with
- The low-voltage cables must be routed separately (not in the same cable duct as 230 V or 400 V cables)
- Comply with the connection requirements of the grid operator (TAB 2007)
- If a frequency converter is required (inrush current), it must be supplied by the client

Checks before commissioning

The following items must be checked before notifying Hoval that the plant is ready for commissioning:

- · Hydraulic piping
- Positioning and installation of the instruments and fittings
- Positioning and installation of the sensors according to the corresponding electrical diagram or project diagram
- Electrical connections for heat pump, control systems, sensors, pumps, motorised valves, etc.
- Functions of the complete heat source system
- Flushing, filling and venting of the complete system

Geothermal probe systems/surface collectors

Comply with the following in geothermal probe systems that are filled with a mixture of anti-freeze and water:

- · Fully demineralised water must be used
- The concentration of antifreeze must be selected at least so as to ensure protection against frost down to -15 °C and so that the required minimum concentration stipulated by the antifreeze manufacturer is maintained (protection against sludge formation and corrosion). However, the antifreeze concentrations should be kept as low as possible with a view to improved heat transmission and lower pump output (SIA standard 384-6 § 4.5.2).
- The antifreeze and the water must be mixed in the required concentration prior to filling.
 Filling with ready-mixed solution that meets the aforementioned requirements is recommended.

Caution!

The condenser and evaporator of a heat pump are sensitive to blockage, as a result of which the system must be flushed carefully on the heating and source sides before the heat pump is connected. The heat exchanger should not have any flow during the flushing procedure.

Hydraulic calibration

- The flow rates are calibrated by the installer.
 This should the based on the recommended nominal flow rate of the heat pump.
- In systems with a buffer storage tank, the flow rate in the fully opened heat circuit should not be greater than the flow rate in the buffer circuit, otherwise the colder heating water return will overflow through the hot water storage tank, leading to mixed temperatures in the flow to the heating system

Notice for commissioning

The registration form should be sent to Hoval 14 days in advance.

- The commissioning should be carried out during the heating period, the best time is during the transitional period
- Temporary electrical installations as well as systems operating in the building carcass are exposed to hazards (electrical power cuts, incorrect operation by third parties, etc.) which can lead to damage to the heat pump and the entire system
- In systems in the building carcass, it is not possible to maintain the boundary conditions such as installation location without frost risk, minimum required return flow temperature, etc. for the heat pump in practical terms, meaning that no correct operation is assured

Caution!

Air/water heat pumps

The heat output of the air/water heat pump is significantly dependent on the outdoor temperature, as a result of which no commissioning activities should be undertaken at temperatures close to the freezing point, in the building carcass for drying out of the structure or for routing underfloor heating pipes (provide the technical storage tank with an electric heating element). Split pipes can only be evacuated properly at a temperature above 8 °C, as a result of which the equipment room must have a room temperature of at least 15 °C. Due to the risk of moisture entering the refrigeration circuit, the outdoor unit cannot be connected in rainy weather. During commissioning, the room temperature of the heated rooms must be at least 15 °C. If a load balancing storage tank (buffer) is provided, its heating water temperature is not allowed to be less than 20 °C during commissioning.

Brine/water heat pumps

The brine/water heat pumps with geothermal probes as the heat source are not suitable for drying out the building carcass or for laying underfloor heating pipes, due to the output/load mixing ratio. The long running times of the heat pump can lead to excessive use of the geothermal probes and thus long-term damage as well as a lower utilisation temperature and even the establishment of permafrost.

Commissioning

It is used for checking and setting the definitive operating values of the system as well as for instructing the operating personnel. During commissioning, the engineering setpoints of the plant must be known, and the following persons must be present:

- The installer to inspect the heating-side installation
- The electrician to inspect the electrical installation
- Hoval Service
- The building owner or the person responsible for operation

Caution!

If Hoval is required to undertake provisional commissioning in uninhabited building carcasses without the required general conditions and proficientlyundertaken electrical and heating installation of the system incl. bleeding, Hoval will not accept liability for operation. The system is operated at the owner's own risk. The required visits to the system will be invoiced separately.

The installer/planner of the plant is responsible for the operating instructions and for providing instruction in third-party products and/ or the entire system!

All Hoval conceptual drawings and engineering guidelines serve as aids during planning. The planner of the plant is responsible for its correct functioning.

General

Heat sources

The heat source (with the exception of the temperature level of the heating system) significantly determines the annual COP that can be achieved, the operational safety and efficiency of a heat pump system.

The most important factors are

- unrestricted availability during the utilisation period
- temperature level of the heat source during the utilisation period
- energy required for transporting the heat source
- chemical and physical safety of the heat source (working safety, maintenance work involved)

Proficient planning and undertaking of the heat source use are amongst the most important tasks for the planning and installer.

Heat sources that are predominantly used for heating living areas are natural and renewable heat sources such as:

- · Fresh air
- Ground
- · Ground water

Waste heat utilisation with heat pumps involves using the heat pump for heat recovery in which the planning must take account not only of the usual criteria such as temperature level, type (waste water, extract air, exhaust gas), chemical and mechanical cleanliness, etc. but also the simultaneity of availability and heat use. A precise analysis is absolutely essential.

Fresh air

Fresh air is available everywhere. The following aspects must be considered when planning with fresh air as the heat source:

- · Application area of the heat pump
- Output fluctuations of the heat pump due to temperature fluctuations of the heat source
- · Defrosting losses of the heat pump
- · Noise emissions from pumping air
- · Formation of condensation
- In coastal regions or other areas with salty air, corrosion can decrease the life-time of the evaporator

Ground

Setting up and operating geothermal probes and ground source collectors requires official approval. The heat capacity and heat conductivity of the soil depend on its composition and water content. It is possible to use it in two different ways.

- Vertically with geothermal probes
- · Horizontally with ground collectors

Observe the following:

- The heat withdrawn at any one time is always significantly greater than can be replenished naturally
- In bivalent systems, the dimensions of the heat source system must be suitable with regard to the amount of heat withdrawn
- Both systems have proven themselves in practice

Geothermal probes

The planning criteria are:

- VDI 4640
- The spec. heat extraction rate which depends on the thermal conductivity (λ) of the underground
- The max. heat extraction per year should not exceed 90 kWh per meter of geothermal probe length

In addition, the following aspects need to be considered:

- The lowest possible total hydraulic resistance through optimisation of the number of geothermal probes, probe diameter and depth
- A certified, specialist drilling company must be used for planning and undertaking the system of geothermal probes

Ground collectors

The energy that is used for compensating for the heat deficit or heat surplus comes almost exclusively from solar radiation and percolating water (rain, snow meltwater). A ground collector is, so to speak, as "climate collector" which is significantly influenced by weather events. The latent heat exploitation when there is a change of state in the water in the moist soil has a positive influence when it comes to calculating the balance. This means the evaporating temperature of the heat pump remains relatively constant over a long time. VDI 4640 must be taken into account during the design, as well as:

for the soil surface

- the climate zone and the aspect of the building
- the thermal conductivity of the soil and the effective number of operating hours

for the ground collector system

- · the lowest possible total resistance
- by optimisation of the number of lines and line length
- If there is insufficient floorspace available, a pressure equalisation can be provided for regenerating the ground collector (e.g. roof collector)

For further details see:

Heat source use/ground collectors.

Ground water

If the temperature of the heat source for the heat pump is below 8 $^{\circ}$ C in the seasonal profile, this must be taken into account in the planning.

Using ground water as a heat source requires official approval. Ground water is a very good heat source because of its high heat capacity and heat transfer properties.

Connection of ground water only via a separating heat exchanger (intermediate carrier circuit). System-based clarifications are mandatory. The most important criteria are:

- · Hydro-geological report
- · Water analysis
- · Official approval/concession

In addition, the following aspects must be considered for the planning:

- VDI 4640
- Min. heat source temperature and flow rate during the utilisation period
- Min. permitted evaporator outlet temperature of the selected heat pump
- Official regulations such as type of use, configuration of the withdrawal and return well, etc.
- A certified, specialist drilling company must be used for planning and undertaking the system of ground water boreholes

The heat source must be free of chemical or mechanical contamination.

Preliminary information required for ground water

- Suitability regarding quantities and temperatures (t ≥ 8 °C)
- · Official approval
- Hydro-geological report
- Water analysis
- The effective minimum ground water temperature

Remarks:

- The ground water temperature varies according to location
- Possibility of infiltration through water from rivers or lakes
- The design must be based on reliable temperature data
- The heat source system, (withdrawal and return well) must be installed professionally (by a specialist company)

The heat source must be free of chemical or mechanical contamination.

Surface water

If the temperature of the heat source for the heat pump is below 8 °C in the seasonal profile, this must be taken into account in the planning.

Planning a heat source system with lake/river water, etc. as the heat source is a challenging task and demands great experience from the planner. Due to the wide temperature fluctuations, direct use is only possible in exceptional cases. Under favourable conditions, for example close to the bank, it is possible to provide a filtering well (as with ground water) as well as an intermediate circuit (indirect use).

Use is not advised without reliable long-term information about the min./max. temperature of the heat source and chemical/mechanical safety.

A feasibility analysis and estimating the maintenance work involved are preconditions for implementation.

The dimensions of the heat exchanger for indirect use are as for ground water.

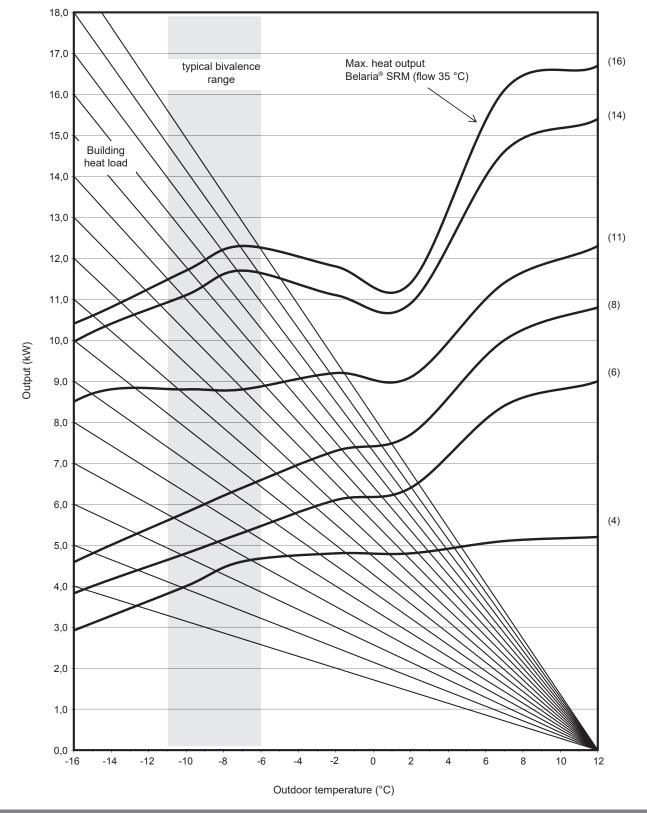
Using public surface water must be reported to the responsible water resources authority, as in the case of groundwater use.

 A qualified specialist company must be contacted for planning and installing the heat source system.

Air/water heat pump

Dimensions of the Belaria® SRM and Belaria® compact SRM air/water heat pump with panel heating

Example


New building with panel heating.

Operating mode: single energy source

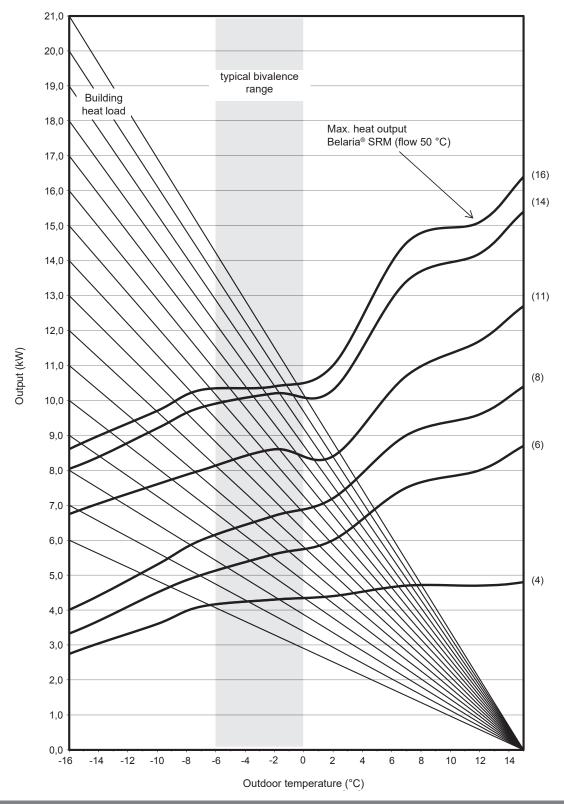
The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® SRM and Belaria® compact SRM at a flow temperature of 35 °C.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

■ Engineering Air/water heat pump

Dimensions of the Belaria® SRM and Belaria® compact SRM air/water heat pump with radiator


Example:

Upgrade of older buildings with radiators. Operating mode:

Bivalent alternative or bivalent parallel

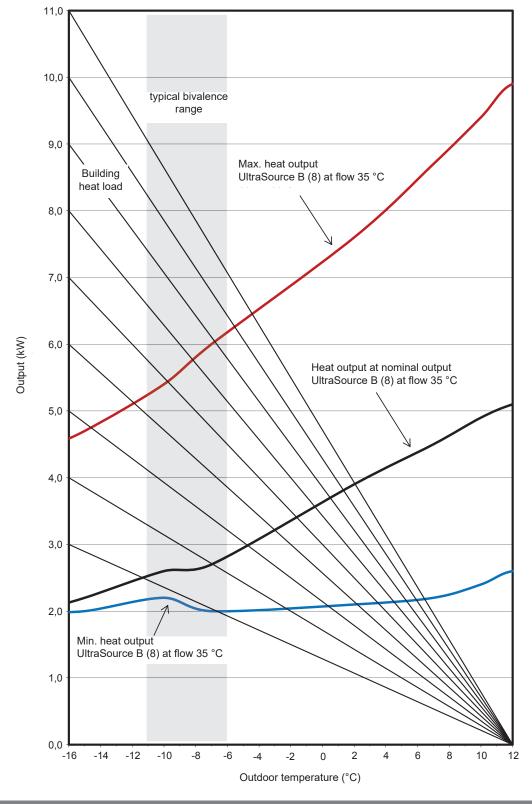
The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® SRM and Belaria® compact SRM at a flow temperature of 50 °C. In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey shaded bivalence range.

Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 35 °C.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating

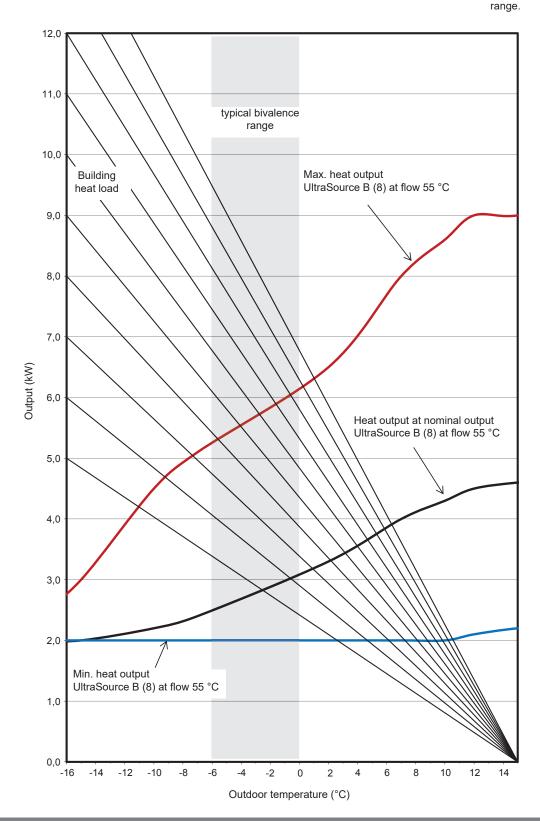
Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with radiators

Example:

Upgrade of older buildings with radiators

Operating mode:


Bivelent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 55 °C. In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load.

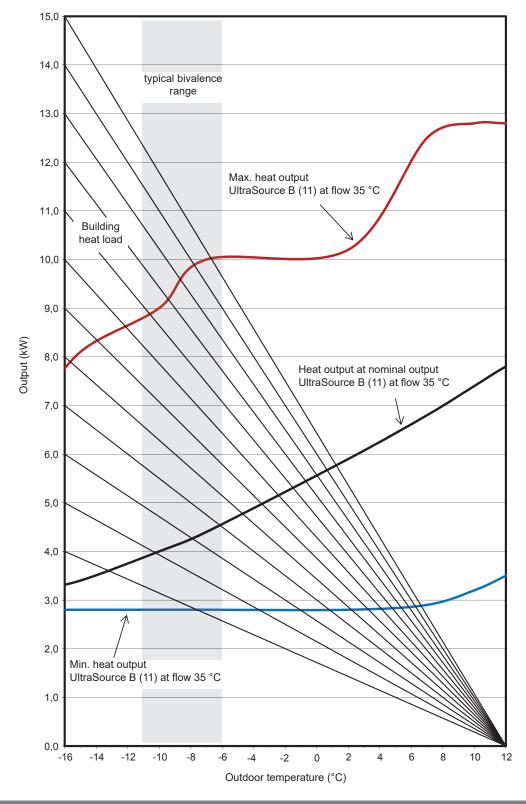
Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump!

This may lie outside the grey shaded bivalence

Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 35 °C.

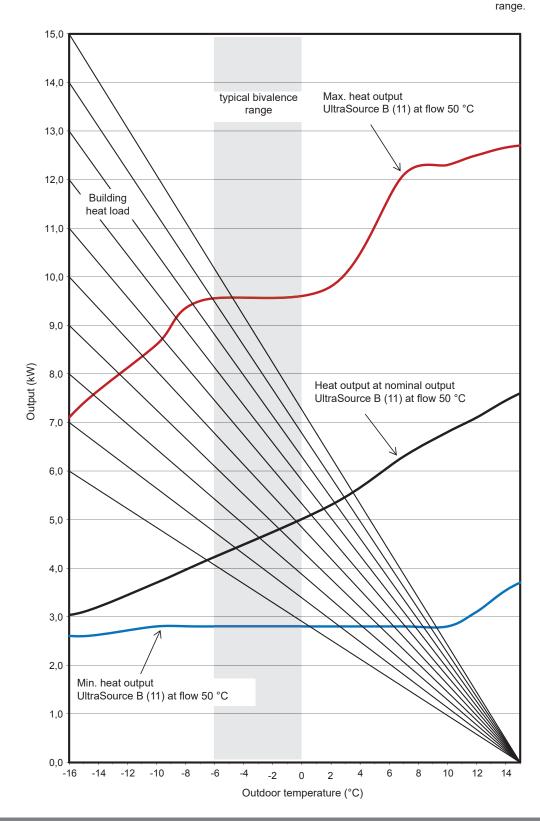
Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with radiators

Example


Upgrade of older buildings with radiators

Operating mode:

Bivelent alternative or bivalent parallel

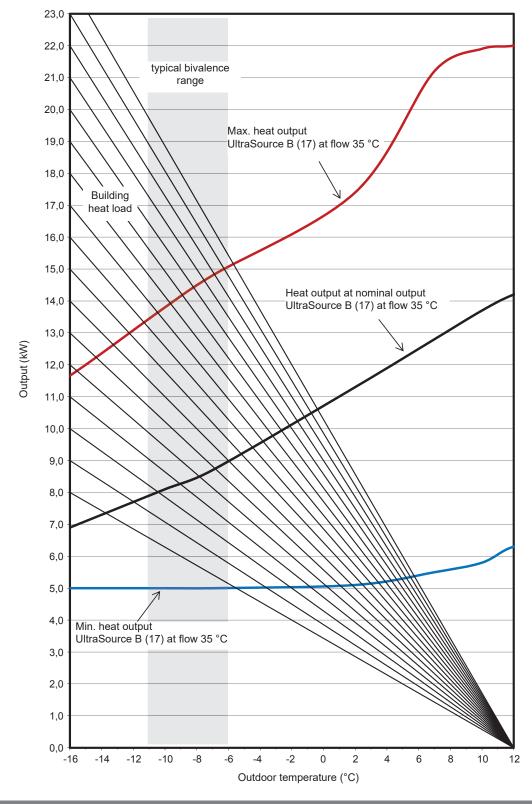
The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 55 °C. In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey shaded bivalence

Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 35 °C.

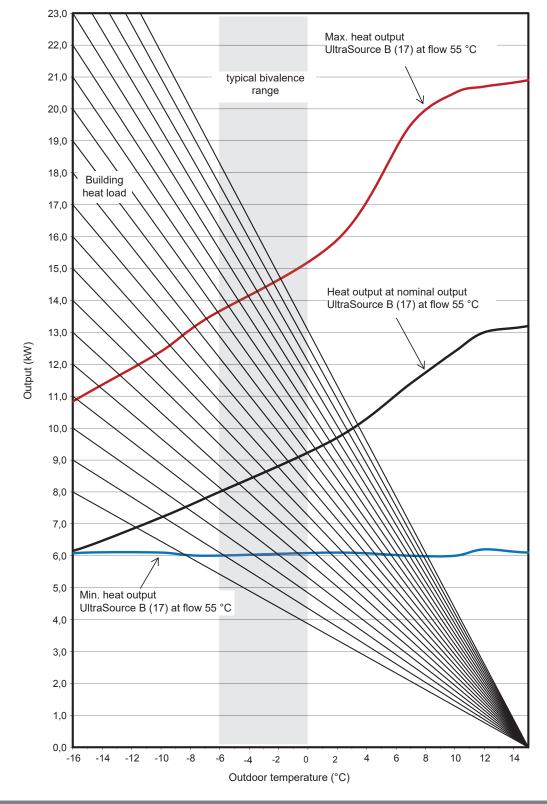
Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

Dimensions of the UltraSource B comfort C and UltraSource B compact C air/water heat pumps with radiators

Example:


Upgrade of older buildings with radiators

Operating mode:

Bivelent alternative or bivalent parallel

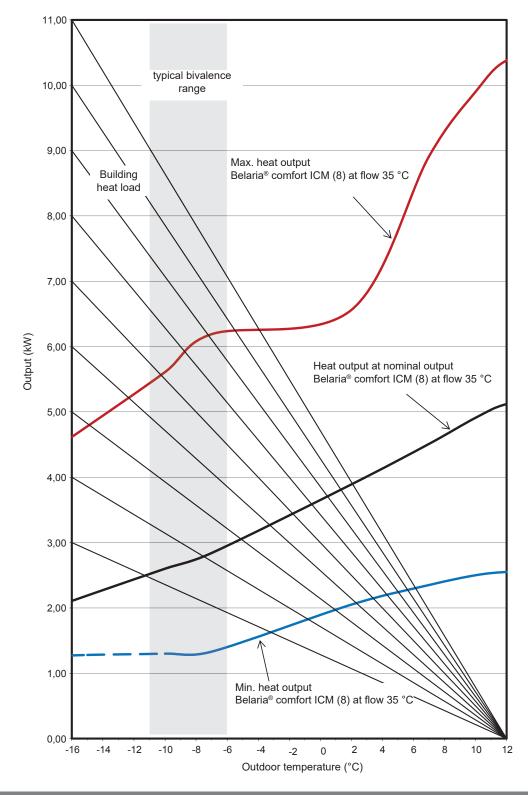
The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the UltraSource B comfort C and UltraSource B compact C at a flow temperature of 55 °C. In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey shaded bivalence range.

Air/water heat pump

Dimensions of the Belaria® comfort ICM (8) air/water heat pumps with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 $^{\circ}\text{C}$ and the output of the Belaria® comfort ICM (8) at a flow temperature of 35 $^{\circ}\text{C}$.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

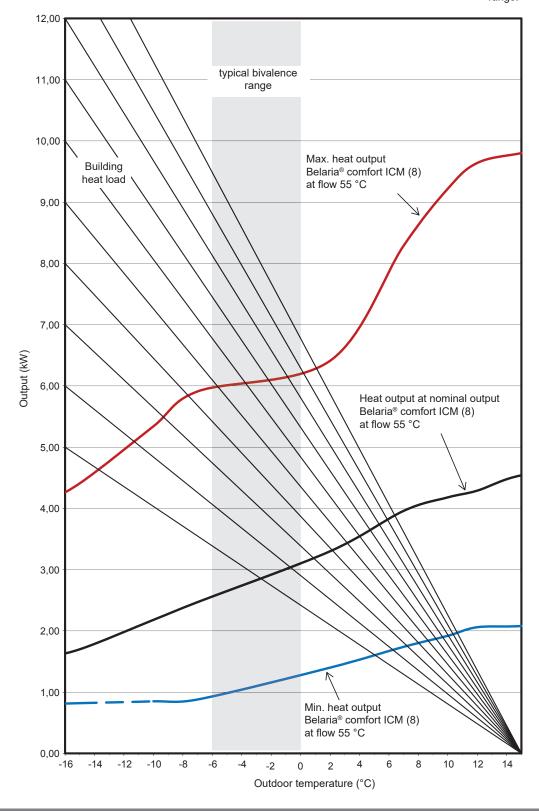
Dimensions of the Belaria® comfort ICM (8) air/water heat pumps with radiators

Example:

Upgrade of older buildings with radiators

Operating mode:

Bivelent alternative or bivalent parallel


The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® comfort ICM (8) at a flow temperature of 55 °C.

In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load.

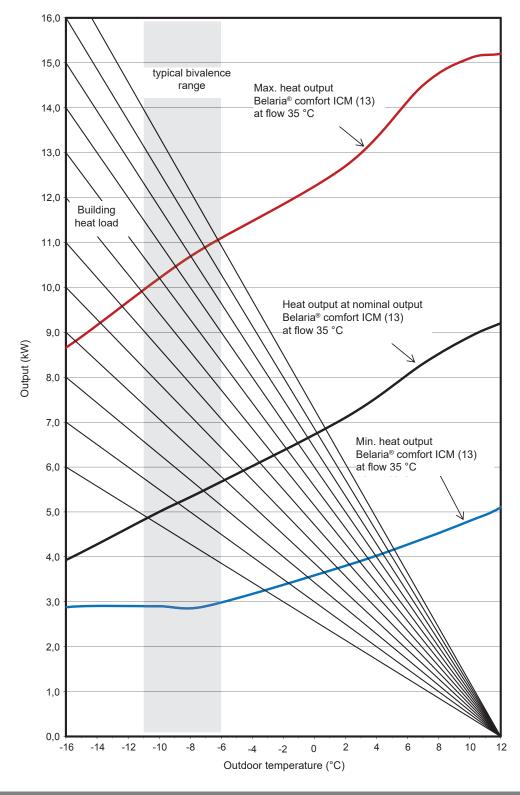
Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump.

This may lie outside the grey shaded bivalence range.

Air/water heat pump

Dimensions of the Belaria® comfort ICM (13) air/water heat pumps with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 $^{\circ}\text{C}$ and the output of the Belaria® comfort ICM (13) at a flow temperature of 35 $^{\circ}\text{C}$.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

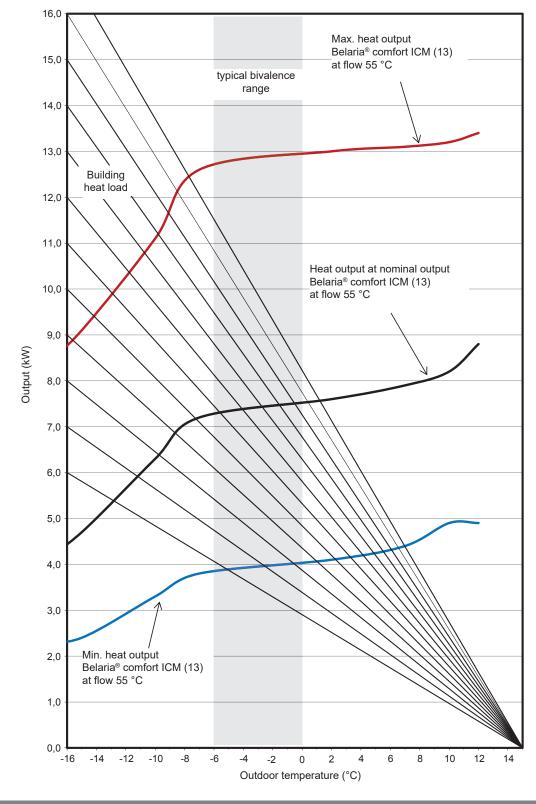
Air/water heat pump

Dimensions of the Belaria® comfort ICM (13) air/water heat pumps with radiators

Example:

Upgrade of older buildings with radiators

Operating mode:


Bivelent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® comfort ICM (13) at a flow temperature of 55 °C.

In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

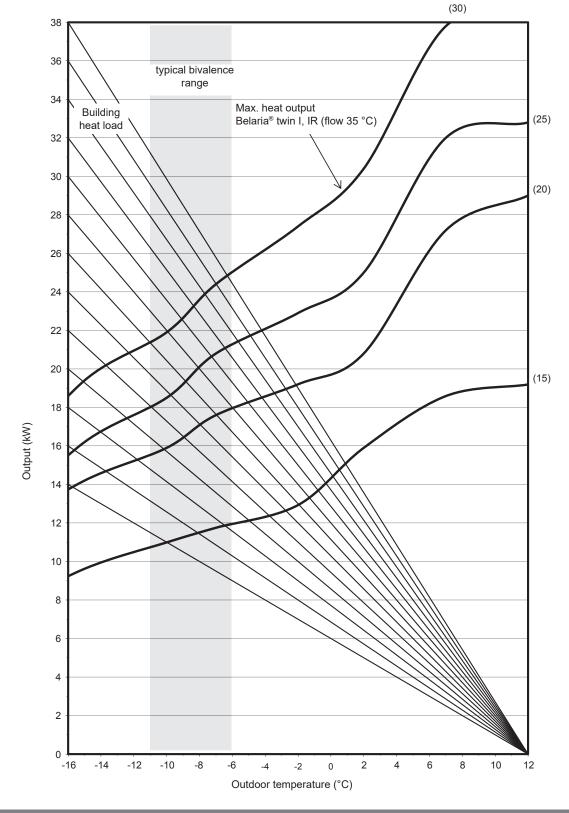
The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump!

range.

Air/water heat pump

Dimensions of the Belaria® twin I, Belaria® twin IR air/water heat pump with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® twin I, Belaria® twin IR at a flow temperature of 35 °C.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

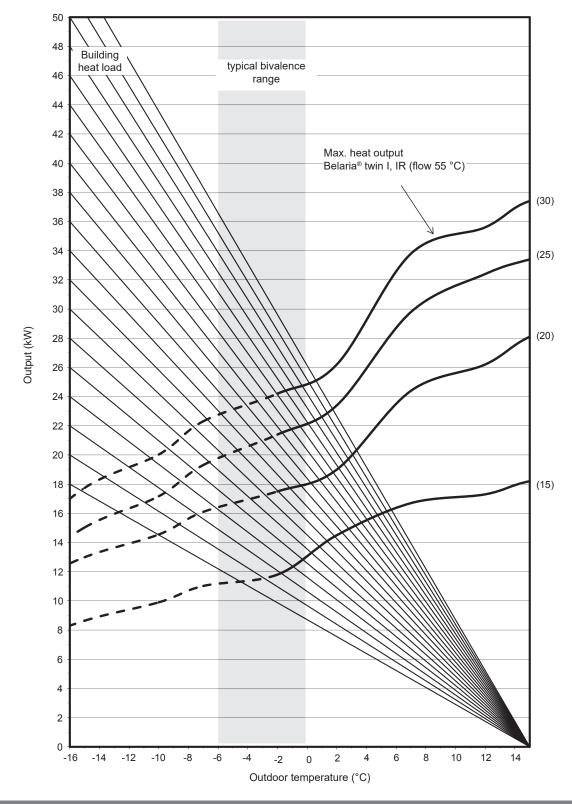
The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

Dimensions of the Belaria® twin I, Belaria® twin IR air/water heat pump with radiator

Example:

Upgrade of older buildings with radiators. Operating mode:


Bivalent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building

(building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® twin I, Belaria® twin IR at a flow temperature of 55 °C.

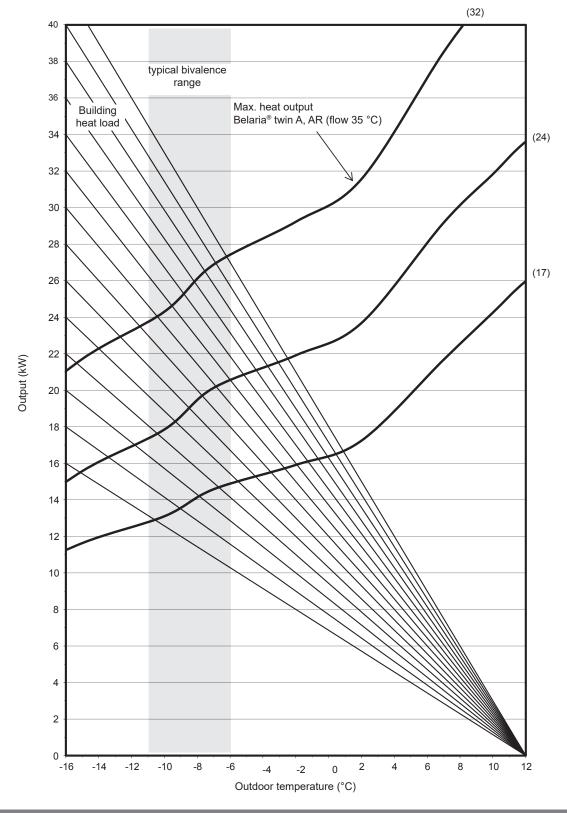
In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey shaded bivalence range. In the area of the dotted line, a flow temperature of 50 °C can no longer be achieved by the heat pump.

Air/water heat pump

Dimensions of the Belaria® twin A, Belaria® twin AR air/water heat pump with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® twin A, Belaria® twin AR at a flow temperature of 35 °C.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

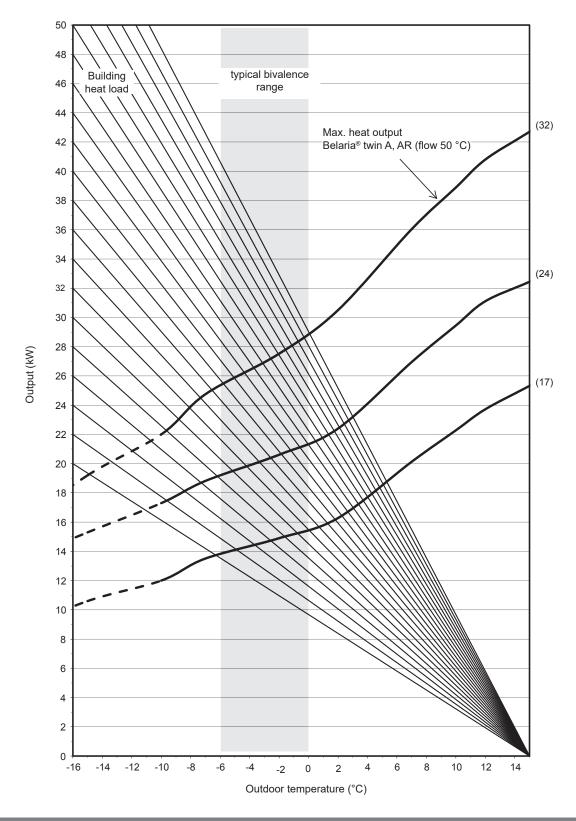
The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

Dimensions of the Belaria® twin A, Belaria® twin AR air/water heat pump with radiator

Example:

Upgrade of older buildings with radiators. Operating mode:


Bivalent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building

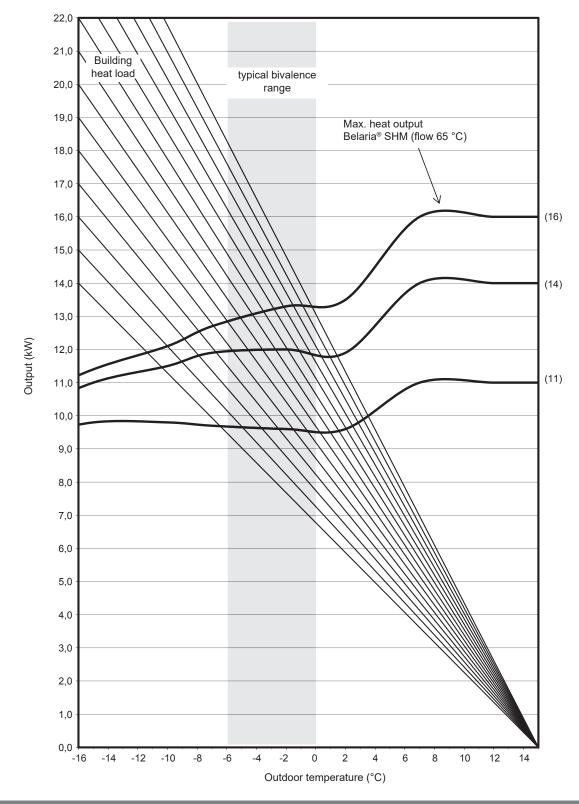
(building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® twin A, Belaria® twin AR at a flow temperature of 50 °C.

In such a system, the balance point usually lies in the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey shaded bivalence range. In the area of the dotted line, a flow temperature of 50 °C can no longer be achieved by the heat pump.

Air/water heat pump

Dimensions of the Belaria® SHM air/water heat pump with radiator


Example:

Upgrade of older buildings with radiators. Bivalent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® SHM at a flow temperature of 65 °C.

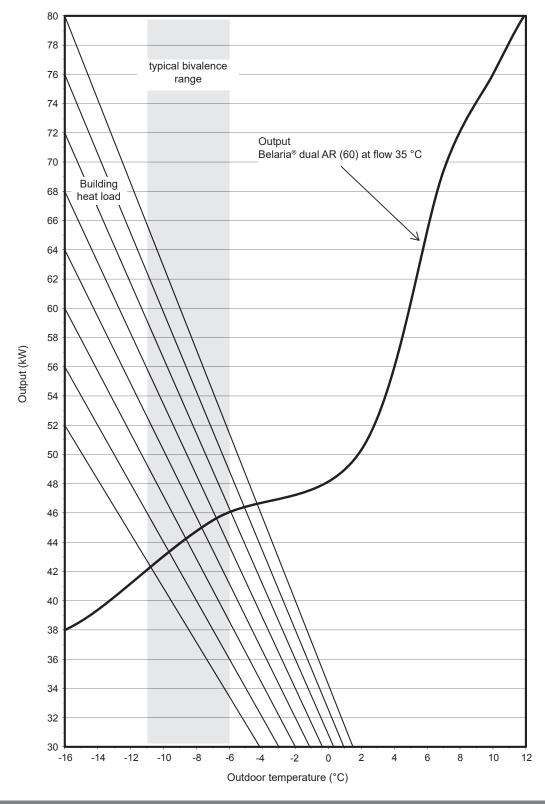
Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

■ Engineering Air/water heat pump

Dimensions of the Belaria® dual AR air/water heat pump with panel heating

Example:


New building with panel heating.

Operating mode: single energy source

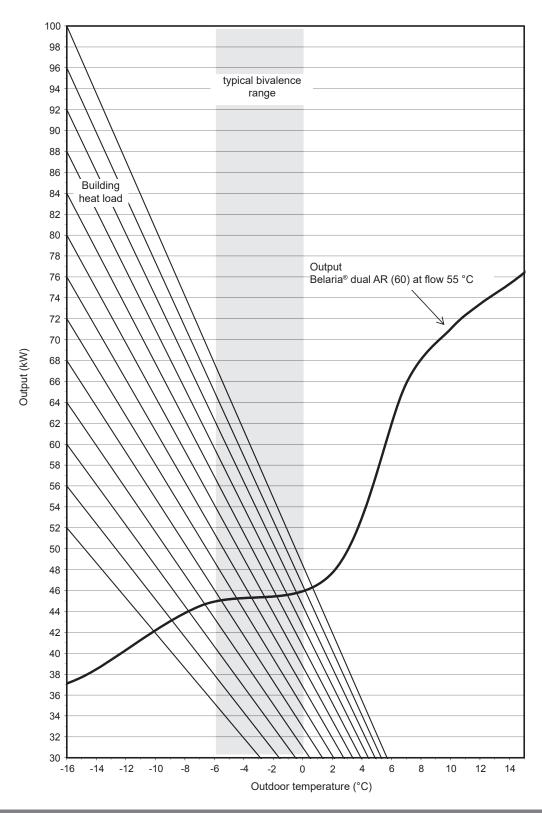
The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® dual AR at a flow temperature of 35 °C.

Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between -6 °C and -11 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual output and the smaller the required output of the additional heating.

Air/water heat pump

Dimensions of the Belaria® dual AR air/water heat pump with radiator


Example:

Upgrade of older buildings with radiators. Operating mode:

Bivalent alternative or bivalent parallel

The diagram shows simplified representations of the heating requirement for the building (building characteristic curve) for a standard outdoor temperature of -16 °C and the output of the Belaria® dual AR at a flow temperature of 55 °C. Ideally, at this standard outdoor temperature, the balance point should be within the grey shaded area between 0 °C and -6 °C outdoor temperature.

The further the balance point is displaced towards the left, the greater the contribution of the heat pump to the annual coefficient of performance. The alternative heating system must cover the entire building heating load. Notice: If the heating system requires high flow temperatures, the balance point is usually determined by the maximum achievable flow temperature of the heat pump! This may lie outside the grey bivalence range.

■ Engineering
Room heating and water heating energy efficiency

Room heating and water for air/water heat pumps		ergy efficienc	у		energy efficiency e climate"	Water heating energy efficiency consumption profile/ηwh
	Туре	Symbol	Unit	35 °C	55 °C	35 °C 55 °C
UltraSource B comfort C	(8)	ηS	%	202	146	XL/95,8
UltraSource B compact C	(8/200)	ηS	%	202	146	XL/95,8
UltraSource B comfort C	(11)	ηS	%	176	135	-
UltraSource B compact C	(11/200)	ηS	%	176	135	XL/100
UltraSource B comfort C	(17)	ηS	%	206	127	XL/95,8
Belaria® SRM	(4)	ηS	%	178	125	-
Belaria® SRM	(6)	ηS	%	169	126	-
Belaria® SRM	(8)	ηS	%	171	126	-
Belaria® SRM	(11)	ηS	%	156	120	-
Belaria® SRM	(14)	ηS	%	153	123	-
Belaria® SRM	(16)	ηS	%	149	119	-
Belaria® compact SRM	(4)	ηS	%	178	125	L/95
Belaria® compact SRM	(6)	ηS	%	169	126	XL/90
Belaria® compact SRM	(8)	ηS	%	171	126	XL/90
Belaria® compact SRM	(11)	ηS	%	156	120	XL/98
Belaria® compact SRM	(14)	ηS	%	153	123	XL/98
Belaria® compact SRM	(16)	ηS	%	149	119	XL/98
Belaria® hybrid SRM	(8/32)	ηS	%	-	129	XL/96
Belaria® SHM	(11)	ηS	%	105	115	-
Belaria® SHM	(14)	ηS	%	110	116	-
Belaria® SHM	(16)	ηS	%	112	117	-
Belaria® comfort ICM	(8)	ηS	%	177	152	-
Belaria® comfort ICM	(13)	ηS	%	182	137	-
Belaria® twin I	(15)	ηS	%	144	113	-
Belaria® twin I	(20)	ηS	%	153	111	-
Belaria® twin I	(25)	ηS	%	152	111	-
Belaria® twin I	(30)	ηS	%	150	112	-
Belaria® twin IR	(15)	ηS	%	145	114	-
Belaria® twin IR	(20)	ηS	%	155	112	-
Belaria® twin IR	(25)	ηS	%	153	112	-
Belaria® twin IR	(30)	ηS	%	151	113	-
Belaria® twin A	(17)	ηS	%	169	130	-
Belaria® twin A	(24)	ηS	%	171	131	-
Belaria® twin A	(32)	ηS	%	172	129	-
Belaria® twin AR	(17)	ηS	%	177	133	-
Belaria® twin AR	(24)	ηS	%	177	133	-
Belaria® twin AR	(32)	ηS	%	177	131	-
Belaria® dual AR	(60)	nS	%	154	122	-

■ Engineering

Room heating and water heating energy efficiency

Room heating and water for brine/water heat pur		rgy efficiend	су	Room heating e "moderate		Water heating e consumptior	profile/ηwh
	Туре	Symbol	Unit	35 °C	55 °C	35 °C	55 °C
UltraSource T comfort	(8)	ηS	%	209	158	XL/	100
UltraSource T compact	(8/200)	ηS	%	209	158	XL/	100
UltraSource T comfort	(13)	ηS	%	213	162		
UltraSource T compact	(13/200)	ηS	%	213	162	XL/	106
UltraSource T comfort	(17)	ηS	%	226	164	XL/	100
Thermalia® comfort	(6)	ηS	%	166	120		
Thermalia® comfort	(8)	ηS	%	176	125		
Thermalia® comfort	(10)	ηS	%	191	133		
Thermalia® comfort	(13)	ηS	%	192	139		
Thermalia® comfort	(17)	ηS	%	190	140	-	
Thermalia® comfort H	(7)	ηS	%	179	134		
Thermalia® comfort H	(10)	ηS	%	188	140		
Thermalia® twin	(20)	ηS	%	202	138		
Thermalia® twin	(26)	ηS	%	198	138		
Thermalia® twin	(36)	ηS	%	206	148		
Thermalia® twin	(42)	ηS	%	203	135	-	
Thermalia® twin H	(13)	ηS	%	181	127		
Thermalia® twin H	(19)	ηS	%	175	132		
Thermalia® twin H	(22)	ηS	%	183	133		
Thermalia® dual	(55)	ηS	%	195	138	-	
Thermalia® dual	(70)	ηS	%	193	140		
Thermalia® dual	(85)	ηS	%	194	142		
Thermalia® dual	(110)	ηS	%	194	141		
Thermalia® dual	(140)	ηS	%	193	141	-	
Thermalia® dual H	(35)	ηS	%	177	130	-	
Thermalia® dual H	(50)	ηS	%	182	135	-	
Thermalia® dual H	(70)	ηS	%	182	132	-	
Thermalia® dual H	(90)	ηS	%	178	131	-	
Thermalia® dual R	(55)	ηS	%	195	138	-	
Thermalia® dual R	(70)	ηS	%	193	140		
Thermalia® dual R	(85)	ηS	%	194	142	-	
Thermalia® dual R	(110)	ηS	%	194	141	-	
Thermalia® dual R	(140)	ηS	%	193	141		

Room heating and water for water/water heat put	•	rgy efficiend	у	"moderat	energy efficiency e climate"	Water heating e consumptior	n profile/ηwh
	Туре	Symbol	Unit	35 °C	55 °C	35 °C	55 °C
UltraSource T comfort	(8)	ηS	%	309	245	XL/	100
UltraSource T compact	(8/200)	ηS	%	309	245	XL/	100
UltraSource T comfort	(13)	ηS	%	313	217		
UltraSource T compact	(13/200)	ηS	%	313	217	XL/	115
UltraSource T comfort	(17)	ηS	%	311	226	XL/	100
Thermalia® comfort	(6)	ηS	%	205	150		
Thermalia® comfort	(8)	ηS	%	231	161		
Thermalia® comfort	(10)	ηS	%	245	170		
Thermalia® comfort	(13)	ηS	%	255	181		
Thermalia® comfort	(17)	ηS	%	240	173		
Thermalia® comfort H	(7)	ηS	%	238	177		
Thermalia® comfort H	(10)	ηS	%	249	185		
Thermalia® twin	(20)	ηS	%	277	183		
Thermalia® twin	(26)	ηS	%	274	180		
Thermalia® twin	(36)	ηS	%	270	191		
Thermalia® twin	(42)	ηS	%	259	176		
Thermalia® twin H	(13)	ηS	%	225	170		•
Thermalia® twin H	(19)	ηS	%	226	172		
Thermalia® twin H	(22)	ηS	%	239	178		•
Thermalia® dual	(55)	ηS	%	257	185		•
Thermalia® dual	(70)	ηS	%	249	180		•
Thermalia® dual	(85)	ηS	%	250	181		•
Thermalia® dual	(110)	ηS	%	242	177		•
Thermalia® dual	(140)	ηS	%	245	178		•
Thermalia® dual H	(35)	ηS	%	254	179		
Thermalia® dual H	(50)	ηS	%	246	179		
Thermalia® dual H	(70)	ηS	%	245	177		
Thermalia® dual H	(90)	ηS	%	240	174		
Thermalia® dual R	(55)	ηS	%	257	185		
Thermalia® dual R	(70)	ηS	%	249	180		
Thermalia® dual R	(85)	ηS	%	250	181		
Thermalia® dual R	(110)	ηS	%	242	177		
Thermalia® dual R	(140)	ηS	%	245	178		

Calorifier selection table

Belaria® air/water heat pumps

						() () () () () () () () () ()	Belaria SKIM 7			Belaria® hybrid SRM ¹)		Belaria® SHM ¹)			UltraSource B comfort C 20		Belaria®	comfort ICM ³⁾		Belaria®	twin I, twin IR			Belaria® twin A, twin AR		Belaria® dual AR
			Туре	(4)	(9)	(8)	(11)	(14)	(16)	(8/32)	(11)	(14)	(16)	(8)	(11)	(17)	(8)	(13)	(15)	(20)	(25)	(30)	(17)	(24)	(32)	(09)
Hea at A	t ou 20W	tput 1st stage /55	kW	2.0	2.8	3.4	4.1	5.0	5.5	3.4	6.0	6.0	6.0	4.5	6.0	9.0	4.5	7.0	9.5	15.0	17.3	18.7	16.0	19.8	22.5	41.1
		ER 200	0.95																							\Box
	İ	ER 300	1.45																							
	İ	ER 400	1 80																							
	İ	ER 500	1.90																							
	a]	ER 800	3.70																							
	Þ	ER 1000	4.50																							
	CombiVa	ESR 200	1.80																							
1_	၂ ပ	ESR 300	2.60																							
Email		ESR 400	3.80																							
1 2		ESSR 500	5.90																							
		ESSR 800	7.00																							
		ESSR 1000	9.15																							
		ERR 300	0.80																							\Box
	<u>_</u>	ERR 400	1.00																							
	≩	ERR 500	1.30																							\square
	MultiVal	ESRR 500	4.30																							\square
	≥	ESRR 800	5.20																							\square
	<u> </u>	ESRR 1000	6.10																							igsquare
		CR 200	0.90																							\square
		CR 300	1.20																							
		CR 500	1.80																							\vdash
		CR 800	2.40																							\vdash
	ज्ञ	CR 1000	2.40																							\vdash
	<u>≥</u>	CSR 300	2.90 3.50																							$\vdash \vdash$
	Ξ	CSR 400	3.50																							$\vdash \vdash \vdash$
) je	CombiVal	CSR 500	4.90																							$\vdash\vdash$
ste	-	CSR 800 CSR 1000	10.70																							$\vdash\vdash$
SS		CSR 1000	6.70 10.00 10.00 12.00																							$\vdash\vdash$
<u>8</u>		CSR 1250 CSR 1500	12.00																							
l ë		CSR 1500 CSR 2000	13.00																							
Stainless steel	-	CRR 500	1.20																							
		CRR 800	1.35													_										$\vdash\vdash$
		CRR 1000	1.35																							\vdash
		CSRR 500	4.90																							$\vdash \vdash$
		CSRR 800	7.20																							$\vdash\vdash\vdash$
		CSRR 1000	10.00																							$\vdash\vdash$
		CSRR 1500	12.00																							
		CSRR 2000	12.00																							
		03KK 2000	12.00																							

Notice:

For higher comfort requirements or a higher hot water requirement, we recommend the storage tank series with larger heating coils: series ESR and ESSR (or CSR).

Heat output SRM, SHM and Hybrid 30 % modulated at A20W55
 Heat output UltraSource B comfort C approx. 42 % modulated at A20W55
 Heat output Belaria® comfort ICM approx. 42 % modulated at A20W55

Calorifier selection table

Thermalia® brine/water heat pumps

						UltraSource T				:	Thermalia® comfort,	comfort H					@ 	twin, twin H							© 0:10 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm 2 cm	dual, dual H,	dual K			
				Туре	(8)	(13)	(17)	(9)	(8)	(10)	(13)	(17)	H (7)	H (10)	(20)	(26)	(36)	(42)	H (13)	H (19)	H (22)	(55)	(70)	(85)	(110)	(140)	H (35)	H (50)	H (70)	(06) H
He	at d	output ′ at B2W	1st V55	kW	4.4	6.9	8.9	5.5	7.3	9.7	13.0	17.2	6.5	9.1	10.3	13.2	17.9	20.9	6.7	9.5	11.3	27.8	36.5	42.2	56.4	67.1	17.2	27.4	37.1	44.8
	90	ER	200	0.95		İ		T																						
		ER	300	1.45																										
İ		ER	400	1.80																										
		ER	500	1.90																										
	CombiVal	ER ER	800	3.70																										
	j	ER	1000	4.50																										
	E	ESR	200	1.80																										
l=	ŭ	ESR	300	2.60		<u> </u>																								
Email		ESR ESSR	400	3.80 5.90																										-
ū		ESSR	500	5.90	-	-	-																					_		
		ESSR	4000	7.00																										-
		ESSR ERR	300	0.80																									_	
	_	EDD	400	1.00	\vdash	-	\vdash	\vdash														_							\vdash	-
1	Va	EDD	500	1.00	-		\vdash																							-
1	Ħ	FSRR	500	4.30																										
1	MultiVal	ERR ERR ESRR ESRR	800	5.20																										\vdash
1		ESRR	1000	6.10																										
		CR	200	0.10																									\vdash	\Box
		CR	300	0.90																										
İ		CR	500	1.80																										
i		CR	800	2.40																										
İ	=	CR	1000	2.40																										
	≋	CSR	300	2 90																										
	CombiVal	CSR	400	3.50 4.90																										
e	Ö	CSR	500	4.90																										
ite	O	CSR	800	6.70																										
S		CSR	1000	10.00																										
Stainless steel		CSR	1250	10.00																										$\vdash \vdash \mid$
ij		CSR	1500	12.00																										$\vdash \vdash \vdash$
Sta		CSR	2000 500	13.00																										\vdash
"		CRR CRR	800	1.20			-	-																					-	
		CRR	1000	1.20 1.35 1.35			-	\vdash	-																					\vdash
		CSRR	500	4 90																		<u> </u>							\vdash	\vdash
		CSRR	800	4.90 7.20																									_	\vdash
		CSRR	1000	10.00																										
		CSRR	1500	12.00																										\vdash
		CSRR	2000	12.00																										
4) [Cource	-		_	_	40	. 0/			. 5	0144																

¹⁾ Heat output UltraSource T comfort approx. 42 % modulated at B0W55

Notice:

For higher comfort requirements or a higher hot water requirement, we recommend the storage tank series with larger heating coils: series ESR and ESSR (or CSR).

Calorifier selection table

Thermalia® water/water heat pumps

						UltraSource T				@@ 	comfort,	comfort H					;	Thermalia® twin, twin H							Thormalia®	dual, dual H,	dual K			
				Туре	(8)	(13)	(17)	(9)	(8)	(10)	(13)	(17)	H (7)	H (10)	(20)	(26)	(36)	(42)	H (13)	H (19)	H (22)	(22)	(70)	(88)	(110)	(140)	H (35)	H (50)	H (70)	(06) H
He	at c	utput 1 at W10	lst)W55	kW	4.5	7.0	9.0	6.7	8.9	11.9	16.2	20.3	8.5	12.0	12.8	16.4	22.7	26.0	8.8	12.4	14.9	35.1	44.9	51.1	68.5	82.2	22.4	34.5	47.0	57.7
		ER	200	0.95																										
		ER	300	1.45 1.80																										
		ER	400	1.80																									\vdash	
		ER	500 800	1.80 3.70																									\vdash	
	Š	ER ER	1000	4.50																									$\overline{}$	
	CombiVal	ESR	200	1.80																										
_	S	ESR	300	2.60																										
Email		ESR	400	3.80																										
ᇤ		ESSR	500	5.90																										
		ESSR	800	7.00																									\vdash	
			1000	9.15																									\vdash	
		ERR	300	0.80	-																								\vdash	
	MultiVal	ERR ERR ESRR	500	1.00 1.30																									$\overline{}$	
	Ħ	FSRR	500	4.30																									-	\vdash
	ž	ESRR	800	5.20																										
		ESRR	1000	6.10																										
		CR	200	0.90																										
		CR	300	1.20																										
		CR	500	1.80																									\longrightarrow	
		CR	800	2.40																									\vdash	
	/al	CR CSR	1000 300	2.40																									\vdash	\vdash
	CombiVa	CSR	400	3.50																										$\vdash \vdash \vdash$
_	E C	CSR	500	4.90																									\Box	
Stainless steel	ŭ	CSR CSR	800	4.90 6.70																									\Box	$\vdash \vdash$
S		CSR	1000	10.00																										
es		CSR	1250	10.00 12.00																										
Ξİ		CSR	1500	12.00																									\square	
Sta		CSR	2000	13.00																									\vdash	
3,		CRR	500 800	1.20															\vdash										\vdash	\vdash
		CRR CRR	1000	1.35		\vdash		\vdash							\vdash				\vdash										\Box	$\vdash \vdash \vdash$
		CSRR	500	4 90																									\Box	$\vdash \vdash \vdash$
		CSRR	800	4.90 7.20																									\Box	$\vdash \vdash \vdash$
		CSRR	1000	10.00																										
		CSRR	1500	12.00																										
		CSRR	2000	12.00																									ت	

Notice:

For higher comfort requirements or a higher hot water requirement, we recommend the storage tank series with larger heating coils: series ESR and ESSR (or CSR).

 $^{^1}$ Stainless steel version only available in Switzerland 2 Heat output UltraSource T comfort approx. 42 % modulated at W10W55

427

320 343 366 389 412

8

7

Engineering

30 W/m²

35 W/m²

Flat collector - dimension tables

Required area

Required area

Number of collector circuits

Number of collector circuits

	tors DA25, 120 m tance 0.5 m		co	Ultra		ce® T	(8)		_	traSo		T ct (13))			Sour		
Heat load	(incl. hot water)	kW	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
15 W/m ²	Required area	m²	160	213	260	313	367	427	480	533	587	640	693	747	800	853	907	960
	Number of collector circuits	units	4	5	6	7	8	9	10	12	13	14	15	16	17	18	19	20
20 W/m ²	Required area	m²	120	160	195	235	275	320	360	400	440	480	520	560	600	640	680	720
	Number of collector circuits	units	3	4	5	5	6	7	8	9	10	10	11	12	13	14	15	15
25 W/m ²	Required area	m²	96	128	156	188	220	256	288	320	352	384	416	448	480	512	544	576
	Number of collector circuits	units	2	3	3	4	4	5	5	6	6	7	7	8	8	9	10	10

130 157

112 135 158

92

3

3

184 214 240

4 4

3 4

4

229

4

183 206

294

252 275

5 5

320 347

6

6

298

6

6

					Ther	malia® co	mfort		
Type			(6)	(8)	(10)	(13)	(17)	H (7)	H (10)
15 W/m ²	Required area	m²	300	393	560	707	907	340	473
	Number of collector circuits	units	7	9	12	15	19	8	10
20 W/m ²	Required area	m²	225	295	420	530	680	255	355
	Number of collector circuits	units	5	7	9	12	15	6	8
25 W/m ²	Required area	m²	180	236	336	424	544	204	284
	Number of collector circuits	units	3	4	6	8	10	4	5
30 W/m ²	Required area	m²	150	197	280	354	454	170	237
	Number of collector circuits	units	3	4	5	6	8	3	4
35 W/m ²	Required area	m²	129	169	240	303	389	146	203
	Number of collector circuits	units	3	3	4	6	7	3	4

69

2 2

 ${\rm m^2}$

m²

units

units

					The	rmalia®	twin		
Type			(20)	(26)	(36)	(42)	H (13)	H (19)	H (22)
15 W/m ²	Required area	m²	1080	1380	1880	2213	640	927	1087
	Number of collector circuits	units	23	29	40	47	14	20	23
20 W/m ²	Required area	m²	810	1035	1410	1660	480	695	815
	Number of collector circuits	units	17	22	30	35	10	15	17
25 W/m ²	Required area	m²	648	828	1128	1328	384	556	652
	Number of collector circuits	units	11	14	19	23	7	10	11
30 W/m ²	Required area	m²	540	690	940	1107	320	464	544
	Number of collector circuits	units	9	12	16	19	6	8	10
35 W/m ²	Required area	m²	463	592	806	949	275	398	466
	Number of collector circuits	units	8	10	14	16	5	7	8

						The	rmalia® d	ual			
Туре			(R)(55)	(R)(70)	(R)(85)	(R)(110)	(R)(140)	H (35)	H (50)	H (70)	H (90)
15 W/m ²	Required area	m²	3027	3820	4433	5920	7193	1793	2700	3647	4453
	Number of collector circuits	units	64	80	93	124	150	38	57	76	75
20 W/m ²	Required area	m²	2270	2865	3325	4440	5395	1345	2025	2735	3340
	Number of collector circuits	units	48	60	70	93	113	29	43	57	70
25 W/m ²	Required area	m²	1816	2292	2660	3552	4316	1076	1620	2188	2672
	Number of collector circuits	units	31	39	45	60	72	18	27	37	45
30 W/m ²	Required area	m²	1514	1910	2217	2960	3597	897	1350	1824	2227
	Number of collector circuits	units	26	32	37	50	60	15	23	31	38
35 W/m ²	Required area	m²	1298	1638	1900	2538	3083	769	1158	1563	1909
	Number of collector circuits	units	22	28	32	43	52	13	20	27	32

Extraction rates

Soil type	Heat extraction rate [W/m²]
Dry, sandy soil	10-15
Moist, sandy soil	15-20
Dry, loamy soil	20-25
Moist, loamy soil	25-30
Silt	30-35
Sandy clay	35-40

- The design of flat plate collectors when using heat pumps with modulating output (types: UltraSource T comfort and compact) is based on the heat load of the building in accordance with DIN EN 18231 and the demand for hot water. This total demand (total output) minus the nominal compressor input power corresponds to the heat extraction power required by the flat plate collector
- All information relates to a total running time per year of max. 1800 h (heating of living space and water heating). This corresponds to a monovalent configuration when the heat pump meets the required total output for heating and domestic hot water (standard systems without special use). If the operating time is longer, the heat source must also be enlarged correspondingly.

Depth probe - dimension tables

Flat collectors DA32, 200 m

Laying dist	aying distance 0.65 m				UltraSource® T comfort/compact (8)					UltraSource® T comfort/compact (13)					UltraSource® T comfort (17)			
Heat load (incl. hot water) kW			3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
15 W/m ²	Required area	m²	160	213	260	313	367	427	480	533	587	640	693	747	800	853	907	960
	Number of collector circuits	units	2	2	2	3	3	4	4	4	5	5	6	6	6	7	7	8
20 W/m ²	Required area	m²	120	160	195	235	275	320	360	400	440	480	520	560	600	640	680	720
	Number of collector circuits	units	1	2	2	2	3	3	3	3	4	4	4	5	5	5	6	6
25 W/m ²	Required area	m²	96	128	156	188	220	256	288	320	352	384	416	448	480	512	544	576
	Number of collector circuits	units	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5
30 W/m ²	Required area	m²	80	107	130	157	184	214	240	267	294	320	347	374	400	427	454	480
	Number of collector circuits	units	1	1	1	2	2	2	2	3	3	3	3	3	3	4	4	4
35 W/m ²	Required area	m²	69	92	112	135	158	183	206	229	252	275	298	320	343	366	389	412
	Number of collector circuits	units	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	4

					Ther	malia® co	mfort		
Туре			(6)	(8)	(10)	(13)	(17)	H (7)	H (10)
15 W/m ²	Required area	m²	300	393	560	707	907	340	473
	Number of collector circuits	units	3	3	5	6	7	3	4
20 W/m ²	Required area	m²	225	295	420	530	680	255	355
	Number of collector circuits	units	2	3	4	4	6	2	3
25 W/m ²	Required area	m²	180	236	336	424	544	204	284
	Number of collector circuits	units	2	2	3	4	5	2	3
30 W/m ²	Required area	m²	150	197	280	354	454	170	237
	Number of collector circuits	units	2	2	3	3	4	2	2
35 W/m ²	Required area	m²	129	169	240	303	389	146	203
	Number of collector circuits	units	1	2	2	3	3	2	2

			Thermalia® twin						
Туре			(20)	(26)	(36)	(42)	H (13)	H (19)	H (22)
15 W/m ²	Required area	m²	1080	1380	1880	2213	640	927	1087
	Number of collector circuits	units	9	11	15	17	5	7	9
20 W/m ²	Required area	m²	810	1035	1410	1660	480	695	815
	Number of collector circuits	units	7	8	11	13	4	6	7
25 W/m ²	Required area	m²	648	828	1128	1328	384	556	652
	Number of collector circuits	units	5	7	9	10	3	5	5
30 W/m ²	Required area	m²	540	690	940	1107	320	464	544
	Number of collector circuits	units	5	6	8	9	3	4	5
35 W/m ²	Required area	m²	463	592	806	949	275	398	466
	Number of collector circuits	units	4	5	7	8	3	3	4

			Thermalia® dual								
Type			(R)(55)	(R)(70)	(R)(85)	(R)(110)	(R)(140)	H (35)	H (50)	H (70)	H (90)
15 W/m ²	Required area	m²	3027	3820	4433	5920	7193	1793	2700	3647	4453
	Number of collector circuits	units	23	29	34	45	54	14	21	28	34
20 W/m ²	Required area	m²	2270	2865	3325	4440	5395	1345	2025	2735	3340
	Number of collector circuits	units	18	22	25	34	41	11	16	21	26
25 W/m ²	Required area	m²	1816	2292	2660	3552	4316	1076	1620	2188	2672
	Number of collector circuits	units	14	18	20	27	33	9	13	17	21
30 W/m ²	Required area	m²	1514	1910	2217	2960	3597	897	1350	1824	2227
	Number of collector circuits	units	12	15	17	23	27	7	11	14	17
35 W/m ²	Required area	m²	1298	1638	1900	2538	3083	769	1158	1563	1909
	Number of collector circuits	units	10	13	15	20	24	6	9	12	15

Extraction rates

Soil type	Heat extraction rate [W/m²]
Dry, sandy soil	10-15
Moist, sandy soil	15-20
Dry, loamy soil	20-25
Moist, loamy soil	25-30
Silt	30-35
Sandy clay	35-40

- The design of flat plate collectors when using heat pumps with modulating output (types: UltraSource T comfort and compact) is based on the heat load of the building in accordance with DIN EN 18231 and the demand for hot water. This total demand (total output) minus the nominal compressor input power corresponds to the heat extraction power required by the flat plate collector
- All information relates to a total running time per year of max. 1800 h (heating of living space and water heating). This corresponds to a monovalent configuration when the heat pump meets the required total output for heating and domestic hot water (standard systems without special use). If the operating time is longer, the heat source must also be enlarged correspondingly.

Depth probe - dimension tables

			СО	UltraSource® T comfort/compact (8)					UltraSource® T comfort/compact (13)						UltraSource® T comfort (17)				
Heat load (incl. hot water) kW		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
40 W/m	Total depth	m	60	80	98	118	138	160	180	200	220	240	260	280	300	320	340	360	
40 44/111	Frost protection	I	41	56	68	81	96	110	124	138	152	165	180	193	206	221	234	247	
45 W/m	Total depth	m	54	72	87	105	123	143	160	178	196	214	232	249	267	285	303	320	
45 W/III	Frost protection	1	37	49	60	72	85	98	110	122	136	148	160	172	184	197	209	221	
50 W/m	Total depth	m	48	64	78	94	110	128	144	160	176	192	208	224	240	256	272	288	
30 W/III	Frost protection	I	33	44	53	65	76	88	100	110	121	132	144	154	165	177	188	198	
EE W/m	Total depth	m	44	59	71	86	100	117	131	146	160	175	190	204	219	233	248	262	
55 W/m	Frost protection	1	31	41	49	60	69	81	90	101	110	121	130	141	150	161	170	181	
60 W/m	Total depth	m	40	54	65	79	92	107	120	134	147	160	174	187	200	214	227	240	
OU W/III	Frost protection	1	28	37	45	55	64	73	82	92	101	110	120	129	138	148	157	165	

			Thermalia [®]											
					comfort						tw	twin		
Туре				(8)	(10)	(13)	(17)	(7)	(10)	(20)	(26)	(36)	(42)	
40 W/m	Total depth	m	113	148	210	265	339	128	178	405	518	705	830	
	Frost protection	1	81	105	149	188	241	91	127	288	369	502	591	
45 W/m	Total depth	m	101	132	187	236	301	114	158	360	460	627	738	
	Frost protection	1	72	94	133	168	214	81	113	256	327	446	525	
50 W/m	Total depth	m	91	118	168	212	271	102	142	324	414	564	664	
	Frost protection	I	65	84	119	151	193	73	101	231	295	401	473	
55 W/m	Total depth	m	83	108	153	193	247	93	130	295	377	513	604	
	Frost protection	I	59	77	109	137	176	66	92	210	268	365	430	
60 W/m	Total depth	m	76	99	140	177	226	85	119	270	345	470	554	
	Frost protection	1	54	70	100	126	161	60	85	192	246	335	394	

			Thermalia®													
				twin H			dı	ual, dual	R	dual H						
Type		(13)	(19)	(22)	(55)	(70)	(85)	(110)	(140)	(35)	(50)	(70)	(90)			
40 W/m	Total depth	m	240	348	408	1135	1433	1663	2138	2698	670	1013	1365	1675		
	Frost protection	1	171	248	290	808	1020	1183	1522	1920	477	721	972	1192		
45 W/m	Total depth	m	214	309	363	1009	1274	1478	1900	2398	596	900	1214	1489		
	Frost protection	1	152	220	258	718	907	1052	1352	1706	424	641	864	1060		
50 W/m	Total depth	m	192	278	326	908	1146	1330	1710	2158	536	810	1092	1340		
	Frost protection	1	137	198	232	646	815	946	1217	1536	381	577	777	954		
55 W/m	Total depth	m	175	253	297	826	1042	1210	1555	1962	488	737	993	1219		
	Frost protection	I	124	180	211	588	742	861	1106	1396	347	524	707	868		
60 W/m	Total depth	m	160	232	272	757	955	1109	1425	1799	447	675	910	1117		
	Frost protection	I	114	165	194	539	679	789	1014	1280	318	480	647	795		

^{*} The total depth and the antifreeze concentration are calculated for duplex probes (4 x 32 x 2.9) and corresponds to 33 % Hoval antifreeze concentrate for a frost protection of -15 °C. The frost protection for the connection pipes and supply pipes is to be calculated separately. The dimensioning table offers reference values for planning and is not intended as a substitute for geological evaluation.

Where the total depth is split between several boreholes, an additional allowance must be made. These allowances depend, amongst other things, on the distance between the boreholes.

Extraction rates

Soil type	Heat extraction rate [W/m]
Sand, dry gravel	< 25
Sand, grit, aquiferous	65-80
Clay, moist loam	35-50
Solid limestone	55-70
Sandstone	65-80
Acidic magmatite (e.g. granite)	65-85
Basic magmatite (e.g. basalt)	40-65
Gneiss	70-85

- The design of flat plate collectors when using heat pumps with modulating output (types: UltraSource T comfort and compact) is based on the heat load of the building in accordance with DIN EN 18231 and the demand for hot water. This total demand (total output) minus the nominal compressor input power corresponds to the heat extraction power required by the flat plate collector
- All information relates to a total running time per year of max. 1800 h (heating of living space and water heating). This corresponds to a monovalent configuration when the heat pump meets the required total output for heating and domestic hot water (standard systems without special use). If the operating time is longer, the heat source must also be enlarged correspondingly.

Brine/water heat pump - flat collector

1 Explanation

To use the geothermal heat, geothermal collector circuits made of plastic of 120 m are laid horizontally and at a depth of approx. 1.2 m to 1.5 m. The collector pipes contain a mixture of water and antifreeze which is circulated by means of a circulating pump. The energy is transferred to an intermediate heat exchanger, which is where the evaporation takes place.

2 Laying depth

Depending on the depth of frost penetration, at least 20 cm under. A laying depth of between 1.2 m and 1.5 m is generally sufficient. Laying depths less than 2 m are to be avoided.

3 Laying distance

In practice, routing is carried out with the following average distances: Pipe DA25 = 0.5 m Pipe DA32 = 0.65 m

4 Laying area

The laying area must be grown and must not be raised unevenly. Before the first heat extraction, the ground has to be compressed. The surface must be undeveloped and even, have only a minimal slope and moreover may not be built on and/or sealed (asphalted, concreted over) at a later point in time. Sloping sites should be avoided because of the risk of slipping, but do not represent a problem for the function of the heat pump system.

It is important on sloping sites that the collector is laid across the slope, and that the distributor is located at the highest point if possible (ventilation). The location of the flat collector must be entered on a plan which remains attached to the heat pump.

5 Inserting the collectors

The collector pipes cannot be kinked or dented. The circuits are laid in a sand bed of approx. 10 cm. The circuits are then covered on every side with sand in order to protect them and to allow optimum heat transfer. The sand not needed between the collectors can be used for this. The circuits of 120 m are to be laid in their entirety (do not shorten them!) and extended into the shaft and/or into the basement approx. 1m or until assembly can be carried out smoothly at the distributor. When it is being filled, the collector must be kept under 3 bar (pressure protocol). It is recommended to lay warning tapes approx. 50 cm above the collector pipes. The brine circuit is to be filled with a water-antifreeze mixture with a frost protection of -15 °C (when using the Hoval antifreeze concentrate 33 vol %). Practical guide: Use water that has been preheated to 30 °C when mixing so that a lasting mixture is ensured and a sound measurement of frost protection is possible.

6 Safety distances

Water pipes: min. 1.5 m
Ducts: min. 1 m
Buildings, walls, area border: min. 1.2 m.
If these minimum distances cannot be observed, the object to be protected has to be insulated accordingly (closed pore insulation) to avoid frost damage.

7 Connection pipe to heating house

It is recommended to join the collector circuits to a shaft (preferably Hoval geothermal heat shaft), so that only two pipes have to be fed to the heating house after that. The geothermal heat shaft must be rainwater-tight and it is essential that it is drained (gravel layer, drainage,...). The connection pipes are also to be laid in a sand bed.

Configuration of the connection pipe according to applicable standards of the country in question.

8 Commissioning

Commissioning of the heat pump is carried out exclusively by Hoval customer service. The heat pump must be electrically connected and the plant filled, well flushed and vented. After commissioning, the customer receives a completion certificate.

As an option, an "inspection and system log book" can be obtained via Hoval customer service.

Brine/water heat pump - depth probe

1 Explanation

To use the geothermal heat, depth probes (preferably 2-circuit probes) are inserted into the ground to a max. depth of 200 m per bore hole. The collector pipes contain a mixture of water and antifreeze which is circulated by means of a circulating pump. The energy is transferred to an intermediate heat exchanger, which is where the evaporation takes place.

A letter of approval is required from the authorities to lay a heat pump unit with depth probe.

2 Dimensioning of the deep borehole

The quick guide offers reference values for planning and is not intended as a substitute for geological evaluation.

In the case of special applications which do not increase the output of the heat pump (e.g. outdoor swimming pool), the heat source must be enlarged over the extended annual runtime (greater annual extraction).

3 Laying/drilling depth

The boreholes are made according to specification and the probes are inserted by the drilling company. If the subsoil actually hit differs from the projected geology, the depth of the borehole(s) must be adjusted to the new situation! The connection pipes are laid in trenches at a depth of approx. 1.2 m.

4 Laying/drilling spacing

Centre of deep borehole to centre of deep borehole min. 7 m (depending on the approval from the authorities, other distances can be stipulated). Larger distances between the boreholes reduce the additional allowance made for the total borehole metres.

The connection pipes are to be laid in a sand bed with a minimum distance of 50 cm.

5 Laying/drilling area

The surface must be undeveloped and even, and have only a minimal slope. The drilling points must be accessible with a drilling device (approx. 20 t in weight, approx. 3 m wide). The position of the depth probes and connection pipes is to be drawn on a plan, which remains on the heat pump.

6 Inserting the depth probes

The drilling company makes the borehole, inserts and backfills the probe and performs a pressure test. Ensure that the probe is properly and sufficiently backfilled from bottom to top. It is recommended to use 2-circuit (duplex) probes. Water and electricity are needed to make the borehole. The drilling mud must be capable of being stored at the borehole (skip or container). Buildings should possibly be protected against splash water from the drilling. If several boreholes are required, ensure that the boreholes all have the same depth and that the connection pipes are all the same length in order to ensure equal rock pressure conditions. Otherwise, flow rate indicators have to be installed. It is recommended to lay warning tapes approx. 50 cm above the connection pipes. The brine circuit is to be filled with a water-antifreeze mixture with a frost protection of -15 °C (when using the Hoval antifreeze concentrate 33 vol %). Practical guide: Use water that has been preheated to 30 °C when mixing so that a lasting mixture is ensured and a sound measurement of frost protection is possible.

7 Safety distances

Between the boreholes: min. 7 m. To water pipes, ducts, buildings, walls and area borders: min. 3 m.

Depending on the approval from the authorities, other distances can be stipulated.

8 Connection pipe to heating house

It is recommended to join the collector circuits to a shaft (preferably Hoval geothermal heat shaft), so that only two pipes have to be fed to the heating house. The geothermal heat shaft must be rainwater-tight and it is essential that it is drained (gravel layer, drainage,...). The connection pipes are also to be laid in a sand bed.

Configuration of the connection pipe according to applicable standards of the country in question.

9 Curing time

Standard cement-bentonite mixtures for the grouting of the depth probes have a curing time of 28 days. Within this time period, the depth probe cannot be operated yet. Ask the drilling company about this.

10 Commissioning

Commissioning of the heat pump is carried out exclusively by Hoval customer service. The heat pump must be electrically connected and the plant filled, well flushed and vented. After commissioning, the customer receives a completion certificate.

As an option, an "inspection and system log book" can be obtained via Hoval customer service.

Water/water heat pump - pumping and injection wells

1 Explanation

To use the ground water heat, pumping and injection wells are mounted. A submerged pump pumps the ground water through an intermediate heat exchanger. This intermediate circuit, which is filled with frost protection agent, transfers the energy to a heat exchanger in the heat pump, which is where evaporation takes place. A letter of approval is required from the authorities to mount a water/water heat pump unit.

2 Direct utilisation of ground water (without intermediate circuit)

The design of modern evaporators (brazed plate heat exchangers with very narrow plate spacing for high transfer rates) is such that applications with direct ground water throughflow are not recommended. These evaporators have very narrow flow channels and are extremely sensitive to even very fine dirt particles such as those abundant in ground water. If individual channels become blocked, they can freeze, resulting in leakage. This can cause irreparable damage to the heat pump. Flow controllers and temperature monitoring devices cannot be used, as the deviations are so slight that they are not registered. Upstream fine filters provide only a partial solution to the problem and need frequent cleaning.

Notice

In the case of systems without an intermediate heat exchanger (direct utilisation of ground water), Hoval accepts no liability for any damage caused by soiling or freezing of the evaporator!

3 Indirect utilisation of ground water (with intermediate circuit)

The somewhat lower performance coefficient is more than compensated for by the high operational reliability. Even with indirect use, ground water analysis is essential to allow selection of the appropriate intermediate heat exchanger and in order to identify problems caused by iron or manganese in combination with oxygen. Ideally, a separating heat exchanger in gasketed design should be used. Such heat exchangers can be dismantled for cleaning and have wider plate spacing. The hydraulic circuit must be executed in compliance with the Hoval circuit diagram. The intermediate circuit is filled with frost protection agent for frost protection of -15 °C (corresponds to 33 % Hoval antifreeze concentrate). The output of the heat pump can thus be read off for brine +5 °C.

4 Ground water

A pump trial run of at least 3 days must be performed in order to ascertain the effectiveness and in order to "clean" the production well. The minimum permissible temperature of the returned ground water is 5 $^{\circ}\text{C}.$

For the intermediate heat exchanger, the following limit values have to be met strictly during the entire period of operation of the heat pump (ground water analysis is imperative, as the water quality can change continually):

ph-value	7 - 9
Sulphates	< 100 mg/l
Chlorides	< 50 mg/l
Nitrates	< 100 mg/l
Phosphates	< 2 mg/l
Free chlorides	< 0.5 mg/l
Free carbonic acid	< 20 mg/l
Ammonia	< 2 mg/l
Iron	< 0.2 mg/l *
Manganese	< 0.1 mg/l *
Oxygen	< 2 mg/l*
Electric conductance	50 - 600 μS/cm

* If the limit value for iron or manganese is exceeded, the presence of oxygen leads to silting up of the heat exchanger or formation of iron and manganese oxide deposits in the injection well. The operation of a water/water heat pump is therefore not advisable.

5 Wells

Two bored wells are ideally mounted. However, where the geology permits this, the injection well can also be used as an absorbing well. Chiselled wells are to be avoided. The injection well should be at least 10 to 15 m away from the ground water flow (depending on the ground water situation, greater distances may be necessary).

6 Connection pipe

The supply and drainage pipe must be laid so that they are protected against frost at a minimum depth of 1.5 m. Ensure that there is a slight slope to the well.

From the production well, a feed pipe is to be laid for the electrical supply pipe of the pump. A backflushable fine filter with a maximum mesh size of 0.5 mm must be placed in the supply pipe, upstream of the heat pump.

A flow monitor is to be installed in the drainage pipe, upstream from the heat pump, to protect the heat pump (observe the installation instructions). After the flow controller, a throttle valve is to be installed to adjust the volume flow. The connection pipes are also to be laid in a sand bed.

The following dimensions are recommended (material PE-HD PN10):

Thermalia® comfort (6-10), comfort H (5-10): ED 40 ($1\frac{1}{4}$ ")

Thermalia® comfort (13,17), twin H (13): ED 50 (1½")

Thermalia® twin (20,26) twin H (19,22), dual H (28,37) dual X (36): ED 63 (2") Thermalia® twin (36-42), dual (60), dual H (46,56): ED 75 (21/")

dual H (46,56): ED 75 (2½") Thermalia® dual (74-90): ED 90 (3")

The specified dimensions are sufficient for connection pipes with a length of approx. 25 m (one direction). For longer connection pipes, choose a larger pipe diameter.

7 Design of the well pump

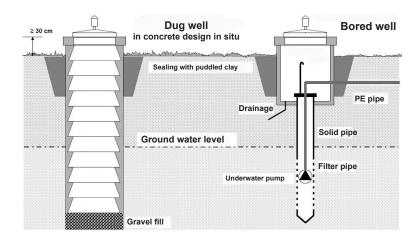
$$m_{W} = \frac{(P_{K} \times 3600)}{(c \times \Delta T)} \quad [kg/h]$$

m_w = mass flow [kg/h] (corresponds approx. to a water volume flow [l/h])

P_K = refrigerating capacity of the heat pump = heat output – electrical output [kW]

c = specific heat capacity [kJ/kg.K] (c_{water} = 4.187 kJ/kg.K)

△T = temperature difference [K] (cooling down of the ground water)


3600 = conversion factor (1 kWh = 3600 kJ)

Rule of thumb: 200 l/h per kW heat pump heat output with a temperature difference of 4 K. Underwater pumps with an integrated non-return valve must be used.

8 Commissioning

Commissioning of the heat pump is carried out exclusively by Hoval customer service. The heat pump must be electrically connected and the plant filled, well flushed and vented. After commissioning, the customer receives a completion certificate.

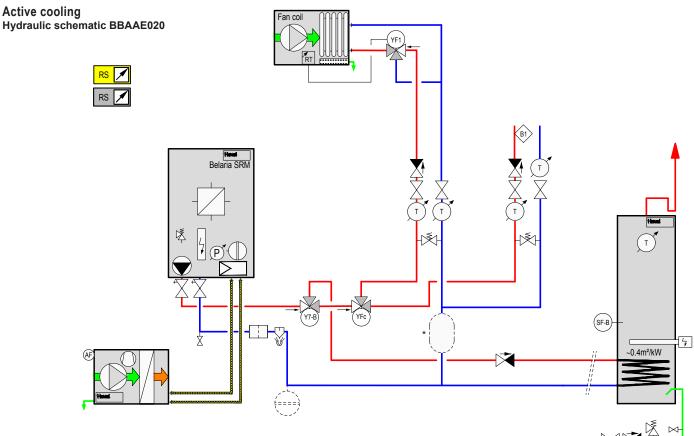
As an option, an "inspection and system log book" can be obtained via Hoval customer service.

Active/passive cooling

- The low temperature can be output into the room using various systems
- Structural conditions (underfloor heating) and requirements on the room air status (dehumidification, room air temperature) must be taken into account when selecting the system
- It is of advantage to plan a separate cooling circuit for cooling. It can, for example, be combined with a cooling ceiling or a ventilation system.
- For lower comfort requirements where a cooling effect suffices, partial cooling via underfloor heating or blower convectors is also possible
- Special thermostatic valves are required that are suitable for heating and cooling operations. Standard thermostatic valves for heating systems close at low room temperatures.

Cooling via panel heating

- Recommended use with active and passive cooling
- In panel cooling, the surfaces enclosing the room (ceilings, floors or walls) are cooled by the following systems:
 - Underfloor heating
 - Cooling ceilings
 - Concrete core temperature control
- In all panel cooling systems, the temperature at the surfaces is not allowed to fall below the dewpoint temperature so that condensation will not form
- The fixed value of 18 °C is not allowed to be reduced by the user
- Dehumidification of the room air is not possible with panel cooling systems, and must be performed using additional systems if required
- If the room air is not dehumidified, the relative humidity will increase as the room temperature falls which can lead to a reduction in comfort
- A plate heat exchanger is installed in the brine circuit (passive cooling)
- The minimum cooling temperature (dewpoint temperature) is regulated by a 3-way mixer valve
- Flow temperature monitoring is required so as to avoid condensation formation (dropping below the dewpoint) on cooling surfaces


Cooling by fan convectors

- · Recommended use only with active cooling
- The cooling circuit must be equipped with a flow controller
- Fan convectors can cool and dehumidify the room air. This increases the comfort level.
- In fan convectors, cold water flows at a temperature below the dewpoint. The resulting condensation must be drained away.
- The connection pipes to the fan convector must be insulated to prevent vapour diffusion and avoid any condensation forming on them

Pipe systems

- Materials resistant to corrosion must be used, such as plastic, chromium steel or a steel that has been treated to resist corrosion
- Galvanised pipes or fittings are not allowed to be used
- In the building, the network of pipes including storage tanks and fittings must be insulated to prevent vapour diffusion and avoid any condensation forming

Examples

B1 Flow temperature guard (if required)

AF Outdoor sensor

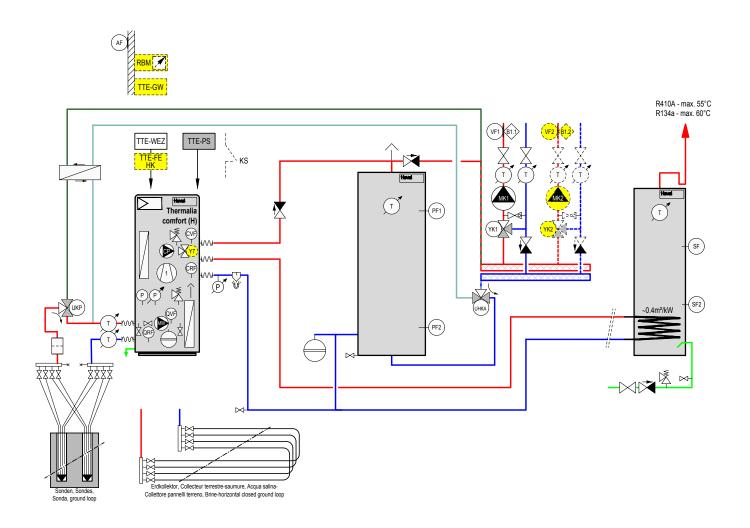
YF1 Actuator Fan Coil

Y7-B Switching valve (Belaria® SRM)

YFc Switching valve (fan coil)

SF-B Calorifier sensor

Option BR RT


Burner connection

External room/moisture thermostat

* Additional volume for defrosting procedure

Passive cooling

TTE-WEZ TTE-PS VF1 B1.1 MK1 YK1 AF SF SF2 PF1 PF2	TopTronic® E basic module heat generator (installed) TopTronic® E buffer module Flow temperature sensor 1 Flow temperature monitor (if required) Pump, mixer circuit 1 Actuator, mixer 1 Outdoor sensor Calorifier sensor Calorifier sensor 2 Buffer sensor 1 Buffer sensor 2
<i>Option</i> RBM TTE-GW	TopTronic® E room control module TopTronic® E Gateway
TTE-FE VF2 B1.2 MC2 YK2	TopTronic® E module expansion heating circuit Flow temperature sensor 2 Flow temperature monitor (if required) Pump, mixer circuit 2 Actuator, mixer 2

Smart Grid (PV function)

Load management with heat pumps

Heat pumps are currently the most efficient method of storing electricity from volatile generation (green electricity from renewable sources such as: wind power, photovoltaic systems or even from combined heat and power). "Smart Grid" in this context refers to an intelligent power system. In contrast to earlier electricity connections that only operate in one direction, the Smart Grid features many distributed electricity generation and consumption systems. It is obvious that it makes most sense to consume the electricity close to where it is generated. This reduces the grid system load and the public grid system predominantly functions as a balancing mechanism.

The following conditions must be met by the system for efficient and convenient operation:

- Smart Meter electricity tariff or
- PV system/small wind turbine with Smart Grid-capable inverter or PV load manager (own electricity consumption)
- Heat pump
- TopTronic® E
- Energy buffer storage tank, min. 800 I
- Mixer circuit
- Possibly additional electrical heating

The heat pump is switched on and off or controlled according to demand, as in the past, depending on weather conditions. Moreover, it is switched on when a particular green electricity surplus is reached and charges the energy buffer storage tank and any calorifiers to a high, generally the maximum, temperature. At times when no green electricity (cheap electricity) is available any longer, the heating is supplied from the charged energy buffer storage tank. The heat pump needs to be operated less frequently during periods when electricity is expensive.

This is implemented using 2 digital inputs on the TopTronic® E. A 4-core signal cable from the inverter/PV load manager or from the Smart Meter is required for this. The information must be provided voltage-free.